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Abstract
   A model based fault diagnosis system for satellites is
proposed which autonomously infers the cause of failure
from telemetry-type time history data using functional
models of satellite subsystems.  The key research issue
is how and to what extent a model without human
expertise can solve the fault diagnosis problem.  The
evaluation results of the prototype system indicate that
though non-deterministic search process guided by some
weak logic can solve the problem within practical time
to some extent, it still has severe limitations coming
from the lack of capability to measure the similarity of
two telemetry data.  Extraction and utilization of
attributes useful for diagnosis task is a promising
approach, and one method is proposed for autonomously
defining such important attributes from telemetry data.

1. Introduction
    Autonomy is one of key technologies for future
spacecraft ([1]-[3]).  It not only reduces the project cost
and personnel by reducing the ground operation
workload, but also improves the satellite survivability
against unpredicted failures or environmental hazards.
Especially, for small, micro or nano scale satellites build
by universities or deep space exploration spacecraft for
which we cannot provide enough ground support,
autonomy will be essential.  Besides, recent tremendous
advancement of high performance micro computer and
large memory is beginning to make it possible to
perform quite sophisticated onboard information

processing including Artificial Intelligence-type
reasoning even on micro or nano satellites.
   One way of building autonomous onboard system is
to incorporate expert systems using knowledge base of
human expertise.  Though large number of such
systems have been proposed and some of them are
actually used, the weak point of such systems is that the
performance of the system is strictly limited by the
quality and quantity of the implemented knowledge.
Especially, recent spacecraft is becoming so complicated
that even the human experts cannot grasp the embedded
causal-effect relationships of the whole system, which
makes it difficult, for example, for the knowledge based
system to infer the real cause for a certain anomalous
behavior of the telemetry data.
   Model based system, which utilizes "model of
causal-effect relationships of spacecraft" as the basis of
inference, have been studied for years to compensate for
the drawbacks of this expert system as well as actually
demonstrated in space such as on DS-1 of New
Millenium Project.  The strong points of this method
are that (1) it can deal with any fault diagnosis or task
planning problem, even too complicated for human
experts to solve in a short time, so far as the modeled
causal-effect relationships can apply, and that (2) the
derived solution is already proved by the model.
However, in order to apply it to the real world problems,
we must solve the difficult problems of knowledge
capture (because the system requires lots of fundamental
knowledge), combinatorial explosion of search space,
and knowledge compilation (transforming the basic
knowledge into ones suitable for model based inference),
model coverage (how various situation including



component failure can be modeled) and so on.
This paper describes a prototype software of a model

based fault diagnosis system developed in our laboratory.
Our aim in this research is to find out to what extent the
model based system without human expertise can solve
such complicated problems.  The strong points as well
as limitations of such model based system will be
discussed and a new approach to compensating for the
weak points will be given later.  Finally the possibility
to utilize a common model for various tasks such as fault
diagnosis, task planning, reconfiguration, etc, will be
discussed.

2. Model Based Fault Diagnosis System
2.1 Overview of the System
   A prototype of a model based fault diagnosis system
for satellite has been developed. As the first attempt,
fault diagnosis of attitude control loop has been tried.
The model includes the attitude control related
subsystems (25 subsystems) including sensors (gyros,
Earth sensor), actuators (reaction wheels, thrusters), an
onboard computer, and support infrastructure such as a

fuel tank and valves, a battery and other electric
subsystems as in Fig.1.  A detailed simulator has been
developed for these subsystems including 90 possible
failure modes such as in Table 1.  A certain number of
telemetry (such as gyro readout, command to thrusters,
voltage of a certain line) are assumed which provide the
information for fault diagnosis, as encircled by ellipses
in Fig.1.
   Fig. 2 shows an example of telemetry for the normal
case, and Fig.3 shows the case where the x-axis gyro has
large bias error in the same situation.  The fault
diagnosis problem can be formalized as "given a set of
anomalous telemetry (called "actual telemetry" hereafter),
the failed subsystem and its failure mode should be
identified." When designing the prototype system, the
following philosophy has been adopted.

(1) Human expertise should be excluded as much as
possible from the inference mechanism

(2) The causal-effect relationships between subsystems
and a simulator of the target system ("model")
should be utilized as much as possible

Fig.1  Model of Attitude C
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Table 1  Failure Modes for Each Subsystem
―――――――――――――――――――
<0> Gyro x　 <1> Gyro y  <2> Gyro z
      1) Scale Factor Error
      2) Bias Error
      3) Alignment Error
      4) Zero Output
      5) Stack to a Value
<3> Wheel x  <4> Wheel y  <5> Wheel z
      1) Scale Factor Error
      2) Large Friction
      3) Large Time Constant
      4) Constant Velocity
      5) Sudden Stop
      6) Lower Speed Limit
<6> Thruster -z(1)  <7> Thruster -z(2) < 8> Thruster +z(1)
<9> Thruster +z(2)<10> Thruster -x(1) <11> Thruster -x(2)
<12>Thruster +x(1)<13> Thruster +x(2)<14> Thruster -y(1)
<15> Thruster -y(2)<16> Thruster +y(1)<17> Thruster +y(2)

      1) Thrust Change
      2) Large Minimum Impulse
      3) No Thrust
      4) Cannot Stop Thrust (valve stack open)
<18> Earth Sensor
      1) No Output
      2) Stack to a Value
      3) Bias Error
<19> Battery
      1) No Output
<20> Electricity Distributing System 0 (5v)
      1) No Output
<21> Electricity Distributing System 1 (12v)
      1) No Output
<22> Propellant Tank
      1) No Fuel Supply
<23> Latch Valve　<24> Valve

1) Stack closed
――――――――――――――――――

Fig.2  Telemetry for Normal (without failure) Case

Fig.3  Telemetry for "X Gyro Large Bias Error" Case
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2.2 Fault Diagnosis Algorithm
Basically, the prototype system tries to find out the

failed subsystem and its failure mode which would yield
the actual anomalous telemetry readouts, using non-
deterministic search procedure.  This guarantees that
any failure modeled in the system can be identified,
except for the case when several failure modes yield the
same telemetry outputs. Even in this case, however, the
true failure mode will be among the several candidates
which survive the screening process.

The problem of this method is, as is easily imagined,
the combinatorial explosion of the search space.
Therefore, the current system utilizes the following
simple logic to exclude improbable failure modes.

<Logic 1> Let simulation be done, assuming that all the
upstream subsystems of subsystem "A" behaves in the
same way as "actual telemetry," and every subsystem is
not faulty.  Then, if the output of "A" coincides with
"actual telemetry," "A" is not faulty.

<Logic 2> If in the above case the output of "A" does
not coincide with "actual telemetry," "A" is faulty.

<Logic 3> Let simulation be performed, assuming that
the subsystem "A" behaves in the same way as "actual
telemetry," and every subsystem is not faulty.  Then if
the outputs of the downstream subsystems of "A"
coincide with "actual telemetry," all the downstream
subsystems of "A" are not faulty.  (This logic assumes
that the series of two or more faulty subsystems will
never yield correct output.)

<Logic 4> The failures of an electric subsystem and fuel
supply subsystem would have effect on all the
downstream subsystems at the same time.

Please note that the above inference strategies are weak
methods which do not depend on human expertise.

In order to do apply the logic, the simulator is
equipped with the capability to simulate the system's
behavior on condition that certain part(s) of the system
(such as gyro output or wheel velocity) follows a
prescribed time history. (This function can be called as
"what-if analysis".)

The fault diagnosis system first searches for the faulty
subsystem using Logic 2, and if no subsystem is found,
then screens out not-faulty subsystems using Logic 1, 3,
4. If several candidates of faulty subsystem are identified,

then number of simulations are performed assuming
each of failure modes and parameter values one by one
to find the combination of "failed subsystem/failure
mode/parameter value" which yields simulated telemetry
data the nearest to the "actual telemetry."

In the above procedure, it is required to measure the
distance between the simulated telemetry and "actual
telemetry" in order to decide "coincide" /"not coincide"
or which is the nearest telemetry.  For this objective,
our system employs the following measure: the
simulated telemetry is generated N times by using
different random seeds for noise generation (for gyro
measurement noise, disturbances, etc.), and the upper
and lower bounds of the simulated telemetry are
calculated. Then the distance between "actual telemetry"
and these upper-lower bounds is calculated at each time
instance which is accumulated over a certain time period
to yield the distance measure.  In this measure, too, no
human expertise has been employed.  Let us discuss the
validity of this measure later.

3  Evaluation of the Prototype System
The prototype system is evaluated by randomly

generated failure modes (single failure case).  Table 2
shows the test results.  The "true one in 1st-2nd means
that the right answer was in the first and second
candidates estimated by the prototype system.
Performance for two types of requirements, the case that
only failed part should be identified and the case that the
failed part and failure mode should be identified, are
evaluated. The computational time is about 3 to 20
minutes, using PC with Pentium 3 processor.  Table 3
shows the diagnosis result for the telemetry of Fig.3,
which shows that the true failure mode is estimated
correctly.

Table 2  Estimation Accuracy of the Prototype System
Cases Failed part only Failed part + mode

True one in 1st candidate 65% 52%
True one in 1st-2nd 80% 74%
True one in 1st-3rd 85% 83%

 Table 3  Fault Diagnosis Result for Fig.3 Telemetry
――――――――――――――――――――――

Elapsed time(s) = 1078
Candidates are:

1) Gyro x: Bias error  (param. -0.06)
2) Gyro x: Scale factor error (param. 0.80)
3) Gyro z: Scale factor error (param. 0.60)
4) Earth sensor bias error (param. 0.04)
5) Gyro y: Scale factor error (param. 0.40)

Cf. True fault: Gyro x: Bias error (param. -0.07)
――――――――――――――――――――――
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4. Discussion on Performance Limitation
   Table 2 shows that the system without human
expertise can estimate the cause of failure to some extent.
The performance, however, falls short of the level that
the system can be reliably utilized.  Let us first try to
find out the true cause of such limitations.  The
following factors seem relevant to the performance
limitation.

(1) Different failure modes sometimes yield almost the
same telemetry patterns.

(2) The distance measure employed in our system
(stated in 2.2) sometimes cannot detect and utilize
"pattern-type" important information in the
telemetry data.

(1) is the limitation coming from the design phase; i.e.,
once the definition of telemetry has been made, the fault
diagnosis system cannot overcome the limitation in this
respect.  Proper definition of telemetry in order to
enhance fault diagnosis capability will be another
important issue, but will not be addressed here.
  (2) is an important issue which seems to limit the
capability of many of current AI systems; i.e. a problem
related to representation capability. For example, two
telemetry data which behaves like sinusoidal curve with
exactly the same frequency and amplitude but different
phases are considered to have large difference in the
current distance measure.  But human can easily find
the two telemetry has a similar symptoms.  This is
because human can extract "pattern-type" attributes from
the original data and utilize them for inference.
Important attributes will be such ones that two telemetry
data having similar attributes tend to indicate the same
failure
   Therefore, one straightforward way to enhance the
system capability is to include such attributes, which
human experts think are important for fault diagnosis, in
the calculation of distance. But this strategy still has the
limitations coming from the limitation of human
capability; i.e. even human experts cannot specify all the
important attributes especially for diagnosing
complicated systems.  In conclusion, in order to pursue
truly capable fault diagnosis system, the system itself
should have the capability to define "the measure of
distance" or "important attributes useful for the diagnosis
task."  The next chapter will propose one method for
this objective.

5. Autonomous Attribute Generation
5.1  Overview
   We have investigated a methodology to extract
features (or attributes) useful for a certain objective
(such as classification) autonomously.  This has been
achieved by combining unsupervised and supervised
learning. Learning Vector Quantization (LVQ [4]-[6])
method is used as the unsupervised learning method
which derives several feature candidates which seem
important.
   LVQ can be used to generate clusters inherent in the
data and to give "typical" patterns of each cluster.  If
the generated cluster corresponds to classes, i.e., data of
different classes tend to belong to different clusters, then
the obtained typical pattern of each cluster will be
possibly informative for classification.  The original
LVQ method, however, cannot take the class information
into account for clustering, and so its modified version
(explained later) is utilized so that the above-mentioned
property is achieved.  The second problem is that even
the modified version of LVQ tends to generates quite
many "typical" features not all of which have
discriminative capability for classification.  So, the
system must have the second ability to select from the
pool of generated features useful ones for classification.
    For this objective, supervised learning using
decision trees is performed following LVQ.  In this
method, sequences of decision making, using one
attribute at a time, are generated in a form of a tree.
Which attribute should be used in what way at each
decision point is determined so that it has the largest
discriminative power of different classes. Though this
selection of an attribute can be said to be rather local, the
generation process of a decision tree can certainly
indicate which attributes are useful for classification.
We use this method after LVQ generates many features
in order to identify only such ones truly relevant for
classification.

5.2  Overall Algorithm
   An example classification task assumed in this paper
is to discriminate x-y curves of mathematical functions
of several families.  A certain number of training data
of such time-histories with class names attached are
assumed to be given, which are used for feature
extraction and decision tree generation. No a priori
information is given as to important shape/pattern
primitives

The system operates in the following manner.  First,
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Fig.4  “Widowing” Operation: Original x-y Curve and
One of Extracted Local Shape

from each of the given training data, several local shapes
are extracted using "windowing" operation (see Fig.4).
   The window’s horizontal size is varied among
several values in order to extract both quite local shapes
and rather global shapes.  The extracted shapes are
normalized both in horizontal and vertical dimensions.
By this normalization, the information of the width and
height of the window and the absolute values (i.e., where
the window is) will be deleted, and so such information
is also attached to each shape data as other attributes.
The shape data obtained in this way are called "local
shapes" hereafter.
   Each local shape has the information of its x-y
trajectory (normalized, in a vector form), its horizontal
and vertical width (Wx and Wy), and the shape’s
averaged position in the original trajectory data (Px and
Py) and its class (which is the same as the class of its
original x-y trajectory).  These data are utilized for both
of LVQ and generation of a decision tree.
   Then, LVQ is used to generate attribute candidates.
Only x-y trajectories of local shapes are used in LVQ,
because the other four attributes (Wx, Wy, Px, Py) are
already in a form of "attributes."  A modified version of
LVQ is utilized, whose algorithm is given below:

   (1) Perform usual LVQ without taking the class
information of data into account.  The original seeds of
clusters are generated by selecting randomly from the
pool of the local shapes. As a result, several clusters and
their "typical" vectors are generated, which will be used
as the seeds in the following steps.

   (2) For each cluster, calculate how many data are
coming from each class, and attach the name of the
majority class to the cluster.
   (3) If the cluster can be said to consist of several
classes (i.e., the number of the second (or third, fourth,
etc.) majority class data exceeds a certain threshold),
then another seed is generated at the averaged position of
the data belonging to this cluster and coming from this
class.  Attach the class name to this new seed, too.
   (4) LVQ is performed again using the seeds
generated in (2) and (3), but this time the following
update rule is used:
 For each local shape given as a training data (named x),

(4-1) Find out the nearest cluster to x from among those

clusters which have the same class as x.

(4-2) Update the vector of the selected cluster using the normal

LVQ algorithm.

   The generated typical vector of each cluster is called
"a Typical Shape Vector (TSV)" hereafter.
   (5) Calculate one sigma of each of the vector
elements within each cluster.  This information will be
used later for shape matching (concretely, if a shape is
within one sigma from a certain TSV, then the shape is
decided to match with this TSV).
   The last process is the generation of a decision tree.
Please note that we want to discriminate the original x-y
trajectories, not the local shapes generated by windowing
process from these trajectories.  The attributes to be
used are the local shape and its other four attributes (Wx,
Wy, Px, Py).  The decision formula at each node in the
tree has the following schema:

IF the x-y trajectory has such a local shape which is matched

with a certain TSV,

                  or

IF the x-y trajectory has such a local shape which is matched

with a certain TSV and this local shape's Wx (or Wy, Px, Py) >

(or < ) a certain value

   As the criterion for deciding the best decision
formula at each node, information gain is utilized. (same
as ID3 or C4.3[7]) A tip node is not extended any more
if the ratio of the number of the majority class data
belonging to the node exceeds a certain threshold (in the
following experiments, 0.95 has been found to be the
best number).
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5.3  Experimental Results
  As the first experiment, we try to discriminate the x-y

curves of mathematic functions of three different classes:

(class 1)  Combinations of (up to three) linear functions

(class 2)  Combinations of (up to three) quadratic

functions

(class 3)  Combinations of (up to two) sinusoidal

functions

   Examples of x-y curves of class 2-3 is given in Fig.5.

                                              

                                              

                                              

                                              

                                              

                                              

                                              

                                              

   Fig.5  Examples of x-y Curves of Class 2 and 3

   A hundred x-y curves are generated randomly for
each class, from which about 3800 local shapes are
extracted by windowing.  The horizontal widths (Wx)
of the local shapes are set at 1/4, 1/2, 1/1 of the original
data.  The vertical axis of the original x-y trajectories as
well as local shapes are normalized between 0 and 1.
   The number of original seeds for LVQ is 30.  There
may be some sensitivity of the performance to this
number, but not studied here.  At the step (3) of the
above algorithm, the number of second (or third, fourth,
etc.) majority class data exceeds:

 ( total number of local shapes ) / ( number of clusters× 2.0 )

then a new seed is generated for the specific class.
   The generated decision tree is finally evaluated in
terms of how correctly it infers the right class, using the
x-y trajectories different from those used in the above
learning process.
   In LVQ process, total 45 clusters are formed.  Fig.6
shows the features used in the decision tree, which are
the final output of "attributes useful for classification
task". The size of the tree is 16 nodes, which seems
reasonable number to discriminate 300 data. The local
shapes shown in Fig.6 are used in the decision tree, and
so can be said important features for classification.
Observing these shapes and how these shapes are used to
discriminate the classes, we can say that the system
autonomously generates and selects such primitive

features as can be said important intuitively.
   The classification capability of the generated
decision tree is evaluated using the x-y trajectories of
three classes also generated using random variable.
The training data and these test data do not overlap.
Table 4 shows how correctly the tree can infer the class
of given x-y trajectories.  The lower part shows the
relationships between the true classes and the inferred
classes.  For example, the tree can infer the class 1 with
99% correctness when the true class is class 1, and 1% of
class 1 data is miss-identified as class 3.  It is observed
that the class 1 can almost perfectly be detected, and
there are the most miss-classification between class 2
and class 3, which coincides with our intuition.
   We plan to apply this method for generation of
attributes useful for fault diagnosis task.
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  Fig.6  Generated Attributes Useful for Classification

  Table 4  Classification Results Using the Generated

             TSV and Decision Tree

Number of Test data   3000
Classification Accuracy 92.65 %
   Error (in %)  1   2    0.0
                1   3    1.0
                2   1    2.0
                2   3    9.0
                3   1    3.5
                3   2    6.5

6. Conclusions and Future Plan
A model based diagnosis system has been described

and its performance is evaluated. The proposed
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autonomous attribute generation method is now being
incorporated into the current fault diagnosis system to
enhance its capability to measure the similarity of
telemetry data.

The ultimate target of our autonomy research project
is to construct an integrated system in which various
autonomous functions, such as fault diagnosis,
reconfiguration, task planning and scheduling are
performed by model based inference using a common
model of the target satellite in different ways (Fig. 7).
In this architecture, too, we would like to avoid inclusion
of human expertise as much as possible, and strategic
knowledge useful for problem solving (such knowledge
for reducing the search space, etc) should be compiled
from the common satellite model and domain knowledge.
By using a common satellite model, we can manage the
change of the satellite design, subsystem design or
operational procedure in a unified way.

As the first step, we have begun to study about the
content and representation scheme for the common
model, by trying to divert the model dedicated for the
fault diagnosis task to planning task to find out what
contents are missing and how the representation should
be modified.
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