
MULTIAGENT-BASED SCHEDULING AND EXECUTION OF ACTIVITIES FOR SPACE

SYSTEMS

Guido Sangiovanni(1), Simone Farè(2), Francesco Amigoni(2), Michèle Lavagna(1)

(1)

 Dipartimento di Ingegneria Aerospaziale – Politecnico di Milano, via La Masa, 34, 20156, Milano, Italy,

Email: sangiovanni@aero.polimi.it; lavagna@aero.polimi.it
 (2)

Dipartimento di Elettronica e Informazione – Politecnico di Milano,Piazza L. da Vinci, 32, 20133, Milano, Italy,

Email: cymon@tiscali.it; amigoni@elet.polimi.it

ABSTRACT

This paper presents the design and the preliminary

experimental validation of an Artificial Intelligence-

based scheduler intended to run onboard a space

satellite. We developed the architecture of the proposed

system according to a multiagent paradigm in which

each agent is associated to a subsystem of the satellite.

In this way, a number of benefits, including robustness,

easy reuse of agents, and the possibility for the

designer to focus on a small portion of the problem at a

time, can be exploited. The experimental scenario is

offered by Palamede, a Low Earth Orbit satellite under

development at the Politecnico di Milano Aerospace

Engineering Department.

1. INTRODUCTION

A completely autonomous space system must be

capable of identifying the goals of the mission,

planning its activities to reach these objectives,

executing and monitoring the planned actions,

detecting the presence of failures, and deploying some

recovery strategies [1][2][5][6][7]. A lot of techniques

to solve these problems, especially the planning and

scheduling ones, are nowadays diffused in the

Artificial Intelligence field. While planning means to

build effective courses of actions to be undertaken in

order to reach some goals, scheduling selects among

alternative plans to appropriately manage resources

concurrently needed by different actions in the plan

[3]. It is currently required that, in the real world

applications, these two aspects be integrated [4].

An increasing interest has been devoted to distributed

problem solving in which a number of problem solvers,

or agents, work together extending their own

capabilities thanks to cooperation [9]. This paradigm is

extremely useful when problems can be better

modelled by a collection of agents that share resources.

The cooperative parallelism generally improves the

efficacy of single agents. Some methodologies have

been created for dealing with such systems in the last

years [8].

In this paper a spacecraft is seen as a collection of

subsystems, each one represented by an agent,

physically and functionally detached but highly

interconnected and interdependent in order to reach the

goals of the mission. The multiagent paradigm has

been effectively used for dealing with the problem of

the satellite management. Indeed a collection of agents

that work and act locally on a common global problem

is more robust than a single manager. The separation of

functions, the decentralization of the activities and

responsibilities, and the parallelism enable each agent

to quickly answer to local unforeseen events or faults,

without involving the overall system. Moreover, the

multiagent paradigm allows the designer to focus on

small portions of the problem at a time, simplifying the

analysis of complex problems. For these reasons, in

space applications the multiagent approach is

increasingly employed, also because some future

missions will be characterized by the presence of

formations or constellations of satellites working

together [7].

The main contribution of this paper is a two-level

distributed scheduler for a multiagent system managing

a spacecraft. The scheduling problem is formalized as a

Distributed Constraint Satisfaction Problem (DCSP) at

the system level [11] and as a Constraint Satisfaction

Problem (CSP) at the agent level [10].

After a sketch of the overall architecture of the system,

the distributed scheduler will be presented in Section 2.

A description of the algorithms and of their

implementation follows. The experimental scenario is

presented in Section 4 and some performances analyses

of the system are reported in Section 5. Related works

and conclusions complete the paper.

2. OVERALL ARCHITECTURE

This work is the first step in a project aimed at

developing a multiagent system for the management of

a completely autonomous spacecraft. In Fig. 1 can be

noticed that a single agent is designed to be composed

of four different modules: a planner/negotiator, a

scheduler, an executor, and a monitor: this is a very

common high level layered architecture for agents in

Proc. of 'The 8th International Symposium on Artifical Intelligence, Robotics and Automation in Space - iSAIRAS’, Munich, Germany.
5-8 September 2005, (ESA SP-603, August 2005)

space applications [1]. In general, a module interacts

only with the adjacent modules in the vertical layered

structure. All the agents of the system, or agency, share

the same architecture. Each agent is responsible of a

single subsystem or an on-board device of the

spacecraft. The corresponding (i.e., at the same level)

modules of different agents create a planner, a

scheduler, an executor, and a monitor, respectively,

that are distributed.

In this paper, we focus on the distributed scheduler that

is the link between the physical world (the level at

which the executor operates) and the deliberative

abstract space of long-term plans. Its implementation is

a first step toward proving the advantages of the

overall approach – robustness, parallelism, reactivity,

and management of shared resources – and analyzing

the drawbacks related to its complexity and to the

interactions between different modules and different

agents.

Planner/Negotiator

Executor

Scheduler

Monitor

Fig. 1. Modules of an agent.

The distributed scheduler is made up of the scheduler

modules of N agents, each one in charge of a set of

activities characterized by duration and resource

consumption and subject to some constraints. For

example, in order to take a picture, before the Grab

activity can be performed, the camera should be on, so

the Camera ON activity should already be started. Both

activities and constraints are currently user-defined, but

they could be the output of the distributed planner.

AGENT

Activity

Activity

Activity

 Local Partial Plan

Local

Algorithm

Global

Algorithm

Fig. 2. Local and global levels of processing.

There are two different levels of processing in the

scheduling process: the local one in which each agent

determines the sequence of its internal activities

according to their ordering constraints, and the global

one in which external constraints are considered

together with consistent consumption of shared

resources (Fig. 2). At the local level, each agent

produces a partial plan using a CSP algorithm based on

dynamic backtracking [13]; at the global level, the

agents harmonize their partial plans using a DCSP

algorithm, called asynchronous weak commitment

[11]. The final plan resulting from this cooperation

respects the constraints on the resource consumption

and on the activities sequencing. As soon as a plan is

built, it is sent to an executor that performs the

activities of the plan and, if errors occur, applies some

fault-recovery procedures.

To take into account resources (i.e., electrical energy

stored into the battery, on board memory, …), a

manager agent is inserted into the agency for each

resource: it is the only entity that has relationship with

the physical resource. This manager is a wrapper that

allows a better management of the information flows

from and to the resource, hiding its real status and its

intrinsic complexity to other agents. Moreover, a

manager could also perform specific tasks, such as

monitoring activities, ad hoc management and

forecasting, or trend analysis. In the current

implementation, we have a single resource: the

electrical energy provided by batteries and solar arrays.

However, other managers could be added, provided

that the interactions protocol among the agents is

modified accordingly.

3. ALGORITHMS AND THEIR

IMPLEMENTATION

Both the local and the global algorithms used in this

work belong to the CSP framework, with the difference

that the latter is distributed: for details refer to [10][11].

The scheduling problem is formalized in this way:

1) there is a set of M activities to be allocated by the

whole agency;

2) this set is partitioned by the user into N subsets;

each subset of activities is relative to an agent;

3) each activity has one variable representing its

starting time, whose time values can be taken from

a finite set (the scheduling horizon); an activity is

characterized also by other parameters like the

duration;

4) each agent is characterized by a global variable,

which is the vector of local starting times of its

local activities;

5) the activities can have local or global constraints

that involve other activities or resources (a local

constraint is known only to an agent, while a

global constraint is known to all agents whose

activities are constrained).

This formalization allows treating the global

scheduling problem both as a DCSP, because each

agent is responsible for its global variable, and, at the

same time, as a collection of N CSPs local to the

agents.

Solving the global problem amounts to find an

assignment of values (i.e., starting times) to all the

variables consistent with all the constraints, thus

obtaining a solution both for the local CSPs and the

global DCSP at the same time. It has to be noticed that

the choice of using a local CSP method allows DCSP

handling multiple local variables in a very easy way.

Moreover, the proposed methodology transforms a

problem of exponential complexity into a set of still

exponential but smaller problems, thus obtaining an

increase in performances.

3.1 The Global Algorithm

As previously said, the global algorithm of the

distributed scheduler is a modification of the

Asynchronous Weak Commitment (AWC) algorithm

that we have chosen among other alternatives like

Asynchronous Backtracking (AB) and Distributed

Breakout (DB) [11]. According to AWC algorithm,

each agent chooses an assignment to its variables and

exchanges this information with the others, sending

ok()? messages. Information coming from other agents

is locally stored into a data structure called agent_view.

Each agent has a priority: in the case of nogood

situations, i.e., whenever some inconsistency of

assignments with constraints is revealed, an agent

increases its own priority and sends a new assignment

to the others. A heuristic called min-conflict is used for

choosing in an optimized way the agent that has to

change its assignment.

It has been already proved that AWC is more efficient

than AB because it can revise a bad decision without

exhaustive search but by changing the priority order of

agents dynamically [12]. On the other side, DB

outperforms the AWC search when problem instances

are critically difficult, because DB does an intensive

analysis of all the possibilities of each agent before

changing its values [11]. The system proposed in this

paper automatically does this local work by using the

local CSP algorithm, so DB is unnecessary. AWC

could be also partially centralized by introducing an

agent that receives and evaluate the nogood messages,

and this property fits well with the proposed

architecture.

The most important innovations we introduced with

respect to the standard AWC described in [11] and [12]

are the use of the resource manager, the behavior in

case of nogood situations, and the use of a local CSP

algorithm for the choice of new assignments to the

variables.

In Fig. 3 the beginning of the scheduling activity is

depicted. The agency is composed of N scheduling

agents (blue circles) and the manager that represents

the resource (the electrical energy). The manager

determines the resource availability over a future time

window and then transmits this information (red

arrows) to the other agents that start local scheduling

(DBR means Dynamic Backtracking with information

about resource; this algorithm is explained later).

According to the AWC method, each agent maintains

the current value assignments of other agents, namely

their local plans, in the agent_view. At the beginning,

each agent_view is empty because the agents don’t

know the commitments of each other. Moreover,

global constraints are not taken into account, so every

partial plan is built in order to satisfy only local

constraints.

A1 A2 AN Manager

DBR DBR DBR

DB1

DB2

DB1

AWC start

Resource

Check

Resource

information

Local

Plans

Fig. 3. Sequence of actions performed and messages

exchanged by agents.

The instantiation order of agents creates the priority

system required by the AWC. An agent changes its

local plan if it is not consistent with the local plan of

any higher priority agents. If no local plans is

consistent with those of higher priority agents, the

agent increases its priority and sends a nogood message

to all the other agents and to the manager. A nogood

message contains its current local plan and the new

priority of the agent. This protocol of interaction

guarantees the asynchronous modifications of an

agent’s agent_view that are driven by the arrival of

others’ local plans with associated priorities.

Following the AWC protocol, each agent sends its

local plan to those with lower priority but also to the

manager (blue arrows): these plans are inserted into the

agent_view of the receiving agents.

After such a message is received by an agent, two

cases are possible:

1) the plan received by the agent is consistent with all

the global constraints involving the receiving

agent so no modification is required (in Fig. 3 the

green boxes DB1 and DB2, where the number

refers to the agent from which the new partial plan

comes);

2) the plan violates some of the global constraints

involving the receiving agent, so the local

algorithm is again used but with a higher level of

information about other agents (red DB1); if the

new local plan is consistent it is sent again to the

agents with lower priority and to the manager.

Whenever a consistent local plan could not be

found, the agent performs a relaxation of the

constraints. This operation involves only resources

and global activities and has the effect that, when

the agent checks the consistency of the plan, it

tolerates small extra resource consumption beyond

the limit and does not take into account global

constraints. The new relaxed plan contains some

flaws, so a nogood situation is encountered. Also

in this case, the agent augments its priority and

transmits its new plan, thus forcing the other

agents to follow its assignments.

In the standard AWC algorithm, nogood situations are

recorded to guarantee the completeness by preventing

loops. With the proposed methodology, the local

algorithm sets the values of the variables so the

completeness is guaranteed at the local level, but not

globally because nogood situations are neither

communicated to other agents nor recorded. In

practice, the number of possible local schedules is very

large so the probability of entering a loop is almost

zero.

By receiving every local plan generated by the agents,

the manager can monitor the evolution of the search

from the resource’s point of view and can stop the

process when a solution is found. In this case, the

manager communicates to the agents the local plans to

which they should commit with during execution.

3.2 The Local Algorithm

The local algorithm of agents is an improved version of

the Dynamic Backtracking method [13]. For every

activity of an agent, the Elimination Explanation (EE)

matrix registers the time positions that are not allowed

for the activity because constrained by other activities,

with an indication of these constraining activities in

order to backjump to them and change their

assignments, if necessary. The local algorithm

iteratively chooses an activity, creates its EE matrix,

and check if allowable positions are present: if yes, the

time location with the maximal level of available

resource is chosen. This heuristic is called maximum

availability heuristic. When no time window matches

the requirements, the algorithm backjumps to the

scheduling of the activity responsible of the flaw by

analyzing the EE matrix. A constraint processor is also

implemented, allowing the pre-processing of

constraints before the creation of the EE matrix: it

identifies cases where no solution exists, putting the

agent into a nogood situation.

3.3 Tools and Languages for implementation

The JADE (Java Agent DEvelopment framework) open

source software platform for peer-to-peer agent-based

application, fully implemented in Java language and

distributed by TILAB, has been used for the

development of the system. It complies with FIPA

specifications, which means that the communication

protocols are standardized and already available [15].

All the knowledge (the activities, their characteristics,

the scheduling and execution parameters...) is coded in

XML.

4. TEST CASE: THE MICROSATELLITE

PALAMEDE

Palamede is a Low Earth Orbit satellite under

development at the Politecnico di Milano Aerospace

Engineering Department. Its main task is to take

pictures of the Earth surface and transmit them to a

ground station. We associated an agent to each

subsystem of the satellite. More precisely, the agency

we developed is composed by the Camera agent, which

manages the activities of taking pictures, the ADCS

agent, which controls the Attitude Determination and

Control System of the satellite, and the ORBCOMM

agent, which manages the communication flows

between Palamede and the ground station via the

ORBCOMM transponder. The onboard electrical

energy is provided by five body-mounted solar arrays

and a Li-Ion battery assembly. By applying a semi-

regulated bus system topology, the nominal mode

power is provided by the solar arrays; whenever extra

power is available, it is used for batteries recharging,

nominally discharged during eclipses. To take into

account the power consumption in the scheduling

activities, a manager agent is associated to this

depletable resource: the Battery agent.

In order to accomplish their tasks in a realistic

scenario, agents should perform the activities reported

in Fig. 4. The durations and power consumptions are

those expected in the real spacecraft: as the total

expected power produced by the solar arrays will be

approximately 20 W and the on-board data handling

subsystem continuously needs 9 W, it is clear that the

management of the power resource is very critical.

Constraints related to activities are temporal

constraints, both global (when involving activities

assigned to different agents) and local (when involving

activities assigned to a single agent), and belong to the

following classes:

1) TimeConstraint(Activity a, char boa, int

instant) – the activity a must be scheduled

before or after instant if boa is respectively B

or A;

2) Eclipse Constraint(Activity a, char code, int

min_dist, int max_dist) – a must be inserted

before, after, during or out of eclipses

according to the value of code (B,A,D, or X),

with a certain distance within the range

specified in last parameters;

3) OverlapConstraint(Activity a, Activity b,

boolean avoid) – if avoid is false a must

overlap b;

4) OrderConstraint(Activity a, Activity b, String

code, int min_dist, int max_dist) – the order

constraint between b and a depends upon the

value of code (e.g. SAE means a Starts After

the End of b).

Constraints related to resources are global so they are

handled directly by resource manager that checks the

aggregate demand of power.

Agent Activity Duration [s]
Power

Consumption

[W]

Camera On 90 3

Grab 30 1.6 Camera

GPS 30 2.3

ORBCOMM On 600/120 1

Transmit Photo 450 25.2 ORBCOMM

Transmit HK 30 25.2

Charge 300 9
Battery

Discharge 1800/150 -12/-18

Read Attitude 30 0.5
ADCS

Control Attitude 120 3.8

Fig. 4. Activities of the agents of Palamede.

5. EXPERIMENTAL RESULTS

We have performed several experiments giving to the

scheduler some goals to be reached. These goals

correspond to the activities to be performed by the

satellite in a temporal horizon of two orbits: the

number of photos to be taken, the number of data and

HK (HouseKeeping) transmissions and the battery

charging periods. Processing the high-level requests,

e.g., take two photos, a special component of the

scheduler infers all the low-level activities needed to

perform them and defines the constraints among these

activities. In the future the distributed planner will

perform this operation. The indicators of performance

of the system are the fraction of the successful

schedules and the time required to reach a consistent

plan.

Fig. 5. A test schedule resulting from the global merging of local plans

Fig. 5 shows an example of schedule that allows the

spacecraft turning on camera three times for grabbing

six pictures, and transmitting housekeeping data and

photos respectively two and three times; moreover, the

battery is recharged in eight periods of five minutes

each. Since at the moment the agency is not able to

manage the state of the satellite before and after the

scheduling horizon, no order constraints among goals

have been inserted and the distributed scheduler has to

respect only temporal and resources constraints, as

previously described. The proposed system finds a

solution to this test case in almost the totality of trials

(499/500) with an average time for finding a solution

of about 8 seconds. It has to be remarked that the

problem is characterized by 52 variables and almost

200 binary constraints, so it is not trivial.

In order to better evaluate the performances of the

distributed scheduler, 192 scenarios have been created

by combining the number of goal activities to be

reached: number of periods of camera on could be 2 or

3, number of photos to be taken could be 3, 5, 7 or 9,

number of transmissions of HK could be 2 or 4 and

those of pictures is comprised between 2 and 5, and

number of charges could be 4, 6 or 8. The scheduler

has to analyze 10 times (trials) each scenario. Tests

were performed with a computer equipped with a

Pentium III 500 MHz processor and 128 Mb RAM. A

timeout of 3 minutes has been given to the system for

solving each trial: whenever this limit was reached the

trial was stopped and declared unsuccessful. About the

60% of the attempts (1180 on 1920) gave consistent

plans before the timeout. 76 on 192 scenarios have

been always solved, while in 26 on 192 scenarios

(~14%) a solution was never found. An analysis of the

performances of the system has been done from the

point of view of the number of activities required to be

scheduled. Changing from 2 to 3 the number of periods

during which the camera is turned on does not change

significantly neither the percentage of successful cases

nor the average solving time; the same happens when

the number of battery charges is changed.

The incidence on performances of the number of

transmissions both of HK and of pictures is lower than

that of the grabs. Fig. 6 and Fig. 7 show that the

percentage of success decreases with the increasing of

the number of transmissions requested, passing from

73% to 47% for photo (for 2 to 5) and from 70% to

50% for HK (for 2 to 4). The average solving time of

success increases too, from 40 to 51 and from 37 to 53

seconds, respectively. Globally, the performances are

not getting worst so much by increasing the number of

transmissions. This is a very important result because

the activities involving transmission are the more

expensive in term of power consumption, thus

requiring the use of battery. This positive result

demonstrates the efficiency of the maximum

availability heuristic used in the local algorithm and

also of the overall methodology for the management of

the resource.

Fig. 6. Performances versus the number of photo

transmissions.

Fig. 7. Performances versus the number of HK

transmissions.

The analysis of the performances related to grab

activities (i.e., the actions of taking pictures) shows

that both the percentage of failures and the average

solving time increase with the number of photos

required (Fig. 8). These activities are characterized by

the shortest duration and very low power consumption

but also by several constraints with external activities

managed by other agents (red arrows in Fig. 9):

according to the real mission plan, an attitude control

action has to be done before two grabs and photo

cannot be taken during eclipse. Grab is the most

constrained activity, representing a very critical node in

the network of relationship among actions.

The introduction of the timeout is a heuristic that

allows avoiding useless computation in case of

impossible solution; as already explained, this is

necessary because our adaptation of the standard AWC

makes the global algorithm not complete. In order to

evaluate the incidence of this parameter on the whole

system, the 26 failed scenarios were considered again

with a timeout of 5 minutes (instead of 3). With 7 trials

for each scenario, the scheduler with extended timeouts

has solved 15 out of 26 problems (~58%), proving the

high sensitivity to this parameter of the system and the

difficulty to set a general limit between hard and

impossible scenarios.

As already explained in previous sections, the proposed

architecture could be very efficient facing faults and

unforeseen events (e.g., modification of the mission

goals or unavailability of a device). Whenever an event

makes a local plan inconsistent, consequences upon the

global one are expected. The multiagent paradigm

allows solving this problem exploiting

decentralization: the single agent could use its local

CSP method in order to adjust the previous plan

according the new scenario without changing others’

assignments. Whenever the solution to the problem

requires an intervention at the agency level, the global

AWC algorithm is used. Note that the same approach

on two levels could be used also for the execution

phase.

Fig. 8. Performances versus the number of grabbing

activities.

Camera On

GPS

Not overlap

Not

overlap

Not overlap

SAE

Read
Attitude

Control

Attitude

Not

overlap

Not

overlap

SAE

SAE

Overlap

associated

activity

Not overlap

other

activities

Eclipse

Grab

Avoid

Fig. 9. Local and global constraints of the grab activity:

the Camera agent activities are in the green set, those

of the ADCS agent are in the blue one.

6. RELATED WORKS

A lot of works has been done with focus on the

autonomy of spacecrafts. NASA’s Remote Agent

probably represents the most relevant benchmark; it

has been implemented on-board during the Deep Space

One mission (1998) and it is able to plan, execute, and

monitor the activities and recover from some failures.

It has not a dedicated scheduler but one of its modules

is an integrated planner/scheduler that generates a set

of time-based event-based activities, known as tokens

[1].

ASPEN and CASPER constitute other relevant

approaches: the first is a planner/scheduler system

realized for managing ground operation while the latter

is its soft real-time version that performs a continual

re-planning using the iterative repairing methodology

[5][6].

The scheduler proposed in this paper is not comparable

directly to these three systems but it is possible to

recognize the same constraint-based interval approach

of [7]. The main difference is that, in this approach, the

variables are the starting and the ending time of

activities.

NASA is also studying extensions of the above

architectures: the multiagent paradigm has been chosen

to obtain relevant enhancements. In [7] an agency has

been built starting from the planning level using the

Hierarchical Task Network paradigm, whereas in our

work the attention is currently focused on the

scheduling and on the robustness allowed by the

multiagent approach.

7. CONCLUSION

The preliminary validation of the proposed distributed

scheduler is satisfactory, even if a more detailed

analysis has to be performed.

A simple distributed executor has been realized too

with the aim of analyzing some fault-recovery

procedures. The execution modules are completely

reactive and no communication among them is present,

similar to RAPS [14]. Whenever a local failure occurs,

the execution modules tries to perform the activity

again until the scheduled ending time is reached.

Next steps of the work will be the improvement of the

distributed executor and the implementation of

complex fault-recovery procedures capable of taking

full advantage from the multiagent paradigm. Last step

of the project will be the creation of a distributed

planner/negotiator that will complete the overall

architecture.

8. REFERENCES

1. N. Muscettola, P. Nayak, B. Pell and B. Williams,

“Remote Agent: To Boldy Go Where No AI System

Has Gone Before”, Artificial Intelligence 103 (1998) 5-

47.

2. M. Lavagna, G. Sangiovanni, A. Da Costa,

“Modelization, failures identification and high-level

recovery in fast varying non-linear dynamical systems

for space autonomy”, Proc. 6th Cranfield Conference

on Dynamics and Control of Systems and Structures in

Space, Riomaggiore, Italia, 18-22 July 2004, p.541-

550.

3. M. Zweben, et al., Intelligent Scheduling, Morgan

Kaufmann editor, 1994.

4. D. E. Smith, J. Frank, A. K. Jonsson, Bridging the

Gap Between Planning and Scheduling, Knowledge

Engineering Review, 15(1), 2000.

5. S. Chien, G. Rabideau, R. Knight, R. Sherwood, B.

Engelhardt, D. Mutz, T. Estlin, B. Smith, F. Fisher, T.

Barrett, G. Stebbins, D. Tran , “ASPEN - Automating

Space Mission Operations using Automated Planning

and Scheduling,” SpaceOps 2000, Toulouse, France,

June 2000.

6. S. Chien, R. Knight, A. Stechert, R. Sherwood, G.

Rabideau, “Integrated Planning and Execution for

Autonomous Spacecraft,” Proc. of the IEEE Aerospace

Conference (IAC), Aspen, CO, March 1999.

7. S. Das, P. Gonsalves, R. Krikorian, W. Truszkowski,

“Multi-Agent Planning and Scheduling environment

for enhanced spacecraft autonomy”, Proc. of 5th

International Symposium on Artificial Intelligence,

Robotics and Automation in Space (iSAIRAS99),

Noodwijk, March 1999.

8. M. Wooldridge, An Introduction to MultiAgent

Systems, Wiley&Sons ed., Chichester, England,

February 2002.

9. E. Durfee, V. Lesser, D. Corkill, Trends in

Cooperative Distributed Problem Solving, IEEE Trans.

On Knowledge and Data Engineering vol. 1 n. 1

March 1989.

10. V. Kumar, “Algorithms for Constraint-Satisfaction

Problems: A Survey”, AI Magazine 13(1):32-44, 1992.

11. M. Yokoo, K. Hirayama, “Algorithms for

Distributed Constraint Satisfaction: A Review”,

Autonomous Agents and Multi-Agent Systems, vol 3,

n.2, 2000.

12. M. Yokoo, E. H. Durfee, T. Ishida, K. Kuwabara,

“Distributed Constraint Satisfaction Problem:

Formalization and Algorithms”, IEEE Trans. on

Knowledge and Data Engineering, vol.10, No.5, 1998.

13. M. L. Ginsberg, “Dynamic backtracking”, Journal

of AI Research, 1:25--46, 1993.

14. R. J. Firby, “Task Networks for Controlling

Continuous Processes”, Proc. of the Second

International Conference on AI Planning Systems,

Chicago IL, June 1994.

15. F. Bellifemine, A. Poggi, G. Rimassa, JADE - A

FIPA compliant agent framework, In Proc. Fourth

International Conference on the Practical Application

of Intelligent Agent and Multi Agent Technology

(PAAM99), pp. 97-108, London, U.K., 1999.

