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ABSTRACT 
 

This paper presents the design and the preliminary 

experimental validation of an Artificial Intelligence-

based scheduler intended to run onboard a space 

satellite. We developed the architecture of the proposed 

system according to a multiagent paradigm in which 

each agent is associated to a subsystem of the satellite. 

In this way, a number of benefits, including robustness, 

easy reuse of agents, and the possibility for the 

designer to focus on a small portion of the problem at a 

time, can be exploited. The experimental scenario is 

offered by Palamede, a Low Earth Orbit satellite under 

development at the Politecnico di Milano Aerospace 

Engineering Department. 

 

1. INTRODUCTION 
 

A completely autonomous space system must be 

capable of identifying the goals of the mission, 

planning its activities to reach these objectives, 

executing and monitoring the planned actions, 

detecting the presence of failures, and deploying some 

recovery strategies [1][2][5][6][7]. A lot of techniques 

to solve these problems, especially the planning and 

scheduling ones, are nowadays diffused in the 

Artificial Intelligence field. While planning means to 

build effective courses of actions to be undertaken in 

order to reach some goals, scheduling selects among 

alternative plans to appropriately manage resources 

concurrently needed by different actions in the plan 

[3]. It is currently required that, in the real world 

applications, these two aspects be integrated [4]. 

An increasing interest has been devoted to distributed 

problem solving in which a number of problem solvers, 

or agents, work together extending their own 

capabilities thanks to cooperation [9]. This paradigm is 

extremely useful when problems can be better 

modelled by a collection of agents that share resources. 

The cooperative parallelism generally improves the 

efficacy of single agents. Some methodologies have 

been created for dealing with such systems in the last 

years [8]. 

In this paper a spacecraft is seen as a collection of 

subsystems, each one represented by an agent, 

physically and functionally detached but highly 

interconnected and interdependent in order to reach the 

goals of the mission. The multiagent paradigm has 

been effectively used for dealing with the problem of 

the satellite management. Indeed a collection of agents 

that work and act locally on a common global problem 

is more robust than a single manager. The separation of 

functions, the decentralization of the activities and 

responsibilities, and the parallelism enable each agent 

to quickly answer to local unforeseen events or faults, 

without involving the overall system. Moreover, the 

multiagent paradigm allows the designer to focus on 

small portions of the problem at a time, simplifying the 

analysis of complex problems. For these reasons, in 

space applications the multiagent approach is 

increasingly employed, also because some future 

missions will be characterized by the presence of 

formations or constellations of satellites working 

together [7]. 

The main contribution of this paper is a two-level 

distributed scheduler for a multiagent system managing 

a spacecraft. The scheduling problem is formalized as a 

Distributed Constraint Satisfaction Problem (DCSP) at 

the system level [11] and as a Constraint Satisfaction 

Problem (CSP) at the agent level [10]. 

After a sketch of the overall architecture of the system, 

the distributed scheduler will be presented in Section 2. 

A description of the algorithms and of their 

implementation follows. The experimental scenario is 

presented in Section 4 and some performances analyses 

of the system are reported in Section 5. Related works 

and conclusions complete the paper. 

 

2. OVERALL ARCHITECTURE 
 

This work is the first step in a project aimed at 

developing a multiagent system for the management of 

a completely autonomous spacecraft. In Fig. 1 can be 

noticed that a single agent is designed to be composed 

of four different modules: a planner/negotiator, a 

scheduler, an executor, and a monitor: this is a very 

common high level layered architecture for agents in 
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space applications [1]. In general, a module interacts 

only with the adjacent modules in the vertical layered 

structure. All the agents of the system, or agency, share 

the same architecture. Each agent is responsible of a 

single subsystem or an on-board device of the 

spacecraft. The corresponding (i.e., at the same level) 

modules of different agents create a planner, a 

scheduler, an executor, and a monitor, respectively, 

that are distributed. 

In this paper, we focus on the distributed scheduler that 

is the link between the physical world (the level at 

which the executor operates) and the deliberative 

abstract space of long-term plans. Its implementation is 

a first step toward proving the advantages of the 

overall approach – robustness, parallelism, reactivity, 

and management of shared resources – and analyzing 

the drawbacks related to its complexity and to the 

interactions between different modules and different 

agents. 

 

 

Planner/Negotiator 

Executor 

Scheduler 

Monitor 

 
Fig. 1. Modules of an agent. 

 

The distributed scheduler is made up of the scheduler 

modules of N agents, each one in charge of a set of 

activities characterized by duration and resource 

consumption and subject to some constraints. For 

example, in order to take a picture, before the Grab 

activity can be performed, the camera should be on, so 

the Camera ON activity should already be started. Both 

activities and constraints are currently user-defined, but 

they could be the output of the distributed planner. 
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Fig. 2. Local and global levels of processing.  

 

There are two different levels of processing in the 

scheduling process: the local one in which each agent 

determines the sequence of its internal activities 

according to their ordering constraints, and the global 

one in which external constraints are considered 

together with consistent consumption of shared 

resources (Fig. 2). At the local level, each agent 

produces a partial plan using a CSP algorithm based on 

dynamic backtracking [13]; at the global level, the 

agents harmonize their partial plans using a DCSP 

algorithm, called asynchronous weak commitment 

[11]. The final plan resulting from this cooperation 

respects the constraints on the resource consumption 

and on the activities sequencing. As soon as a plan is 

built, it is sent to an executor that performs the 

activities of the plan and, if errors occur, applies some 

fault-recovery procedures. 

To take into account resources (i.e., electrical energy 

stored into the battery, on board memory, …), a 

manager agent is inserted into the agency for each 

resource: it is the only entity that has relationship with 

the physical resource. This manager is a wrapper that 

allows a better management of the information flows 

from and to the resource, hiding its real status and its 

intrinsic complexity to other agents. Moreover, a 

manager could also perform specific tasks, such as 

monitoring activities, ad hoc management and 

forecasting, or trend analysis. In the current 

implementation, we have a single resource: the 

electrical energy provided by batteries and solar arrays. 

However, other managers could be added, provided 

that the interactions protocol among the agents is 

modified accordingly. 

 

3. ALGORITHMS AND THEIR 

IMPLEMENTATION 
 

Both the local and the global algorithms used in this 

work belong to the CSP framework, with the difference 

that the latter is distributed: for details refer to [10][11]. 

The scheduling problem is formalized in this way: 

1) there is a set of M activities to be allocated by the 

whole agency; 

2) this set is partitioned by the user into N subsets; 

each subset of activities is relative to an agent; 

3) each activity has one variable representing its 

starting time, whose time values can be taken from 

a finite set (the scheduling horizon); an activity is 

characterized also by other parameters like the 

duration; 

4) each agent is characterized by a global variable, 

which is the vector of local starting times of its 

local activities; 

5) the activities can have local or global constraints 

that involve other activities or resources (a local 

constraint is known only to an agent, while a 



global constraint is known to all agents whose 

activities are constrained). 

 

This formalization allows treating the global 

scheduling problem both as a DCSP, because each 

agent is responsible for its global variable, and, at the 

same time, as a collection of N CSPs local to the 

agents. 

Solving the global problem amounts to find an 

assignment of values (i.e., starting times) to all the 

variables consistent with all the constraints, thus 

obtaining a solution both for the local CSPs and the 

global DCSP at the same time. It has to be noticed that 

the choice of using a local CSP method allows DCSP 

handling multiple local variables in a very easy way. 

Moreover, the proposed methodology transforms a 

problem of exponential complexity into a set of still 

exponential but smaller problems, thus obtaining an 

increase in performances. 

 

3.1 The Global Algorithm 
 

As previously said, the global algorithm of the 

distributed scheduler is a modification of the 

Asynchronous Weak Commitment (AWC) algorithm 

that we have chosen among other alternatives like 

Asynchronous Backtracking (AB) and Distributed 

Breakout (DB) [11]. According to AWC algorithm, 

each agent chooses an assignment to its variables and 

exchanges this information with the others, sending  

ok()? messages. Information coming from other agents 

is locally stored into a data structure called agent_view. 

Each agent has a priority: in the case of nogood 

situations, i.e., whenever some inconsistency of 

assignments with constraints is revealed, an agent 

increases its own priority and sends a new assignment 

to the others. A heuristic called min-conflict is used for 

choosing in an optimized way the agent that has to 

change its assignment. 

It has been already proved that AWC is more efficient 

than AB because it can revise a bad decision without 

exhaustive search but by changing the priority order of 

agents dynamically [12]. On the other side, DB 

outperforms the AWC search when problem instances 

are critically difficult, because DB does an intensive 

analysis of all the possibilities of each agent before 

changing its values [11]. The system proposed in this 

paper automatically does this local work by using the 

local CSP algorithm, so DB is unnecessary. AWC 

could be also partially centralized by introducing an 

agent that receives and evaluate the nogood messages, 

and this property fits well with the proposed 

architecture. 

The most important innovations we introduced with 

respect to the standard AWC described in [11] and [12] 

are the use of the resource manager, the behavior in 

case of nogood situations, and the use of a local CSP 

algorithm for the choice of new assignments to the 

variables. 

 

In Fig. 3 the beginning of the scheduling activity is 

depicted. The agency is composed of N scheduling 

agents (blue circles) and the manager that represents 

the resource (the electrical energy). The manager 

determines the resource availability over a future time 

window and then transmits this information (red 

arrows) to the other agents that start local scheduling 

(DBR means Dynamic Backtracking with information 

about resource; this algorithm is explained later). 

According to the AWC method, each agent maintains 

the current value assignments of other agents, namely 

their local plans, in the agent_view. At the beginning, 

each agent_view is empty because the agents don’t 

know the commitments of each other. Moreover, 

global constraints are not taken into account, so every 

partial plan is built in order to satisfy only local 

constraints. 

 

 
A1 A2 AN Manager 

DBR DBR DBR 

DB1 

DB2 

DB1 

AWC start 

Resource 

Check 

Resource 
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Local 

Plans 

 

Fig. 3. Sequence of actions performed and messages 

exchanged by agents. 

 

The instantiation order of agents creates the priority 

system required by the AWC. An agent changes its 

local plan if it is not consistent with the local plan of 

any higher priority agents. If no local plans is 

consistent with those of higher priority agents, the 

agent increases its priority and sends a nogood message 

to all the other agents and to the manager. A nogood 

message contains its current local plan and the new 

priority of the agent. This protocol of interaction 

guarantees the asynchronous modifications of an 

agent’s agent_view that are driven by the arrival of 

others’ local plans with associated priorities. 

 



Following the AWC protocol, each agent sends its 

local plan to those with lower priority but also to the 

manager (blue arrows): these plans are inserted into the 

agent_view of the receiving agents. 

After such a message is received by an agent, two 

cases are possible:  

1) the plan received by the agent is consistent with all 

the global constraints involving the receiving 

agent so no modification is required (in Fig. 3 the 

green boxes DB1 and DB2, where the number 

refers to the agent from which the new partial plan 

comes); 

2) the plan violates some of the global constraints 

involving the receiving agent, so the local 

algorithm is again used but with a higher level of 

information about other agents (red DB1); if the 

new local plan is consistent it is sent again to the 

agents with lower priority and to the manager. 

Whenever a consistent local plan could not be 

found, the agent performs a relaxation of the 

constraints. This operation involves only resources 

and global activities and has the effect that, when 

the agent checks the consistency of the plan, it 

tolerates small extra resource consumption beyond 

the limit and does not take into account global 

constraints. The new relaxed plan contains some 

flaws, so a nogood situation is encountered. Also 

in this case, the agent augments its priority and 

transmits its new plan, thus forcing the other 

agents to follow its assignments.  

 

In the standard AWC algorithm, nogood situations are 

recorded to guarantee the completeness by preventing 

loops. With the proposed methodology, the local 

algorithm sets the values of the variables so the 

completeness is guaranteed at the local level, but not 

globally because nogood situations are neither 

communicated to other agents nor recorded. In 

practice, the number of possible local schedules is very 

large so the probability of entering a loop is almost 

zero. 

By receiving every local plan generated by the agents, 

the manager can monitor the evolution of the search 

from the resource’s point of view and can stop the 

process when a solution is found. In this case, the 

manager communicates to the agents the local plans to 

which they should commit with during execution. 

 

3.2 The Local Algorithm 
 

The local algorithm of agents is an improved version of 

the Dynamic Backtracking method [13]. For every 

activity of an agent, the Elimination Explanation (EE) 

matrix registers the time positions that are not allowed 

for the activity because constrained by other activities, 

with an indication of these constraining activities in 

order to backjump to them and change their 

assignments, if necessary. The local algorithm 

iteratively chooses an activity, creates its EE matrix, 

and check if allowable positions are present: if yes, the 

time location with the maximal level of available 

resource is chosen. This heuristic is called maximum 

availability heuristic. When no time window matches 

the requirements, the algorithm backjumps to the 

scheduling of the activity responsible of the flaw by 

analyzing the EE matrix. A constraint processor is also 

implemented, allowing the pre-processing of 

constraints before the creation of the EE matrix: it 

identifies cases where no solution exists, putting the 

agent into a nogood situation. 

 

3.3 Tools and Languages for implementation 
 

The JADE (Java Agent DEvelopment framework) open 

source software platform for peer-to-peer agent-based 

application, fully implemented in Java language and 

distributed by TILAB, has been used for the 

development of the system. It complies with FIPA 

specifications, which means that the communication 

protocols are standardized and already available [15]. 

All the knowledge (the activities, their characteristics, 

the scheduling and execution parameters...) is coded in 

XML. 

 

4. TEST  CASE: THE MICROSATELLITE 

PALAMEDE 
 

Palamede is a Low Earth Orbit satellite under 

development at the Politecnico di Milano Aerospace 

Engineering Department. Its main task is to take 

pictures of the Earth surface and transmit them to a 

ground station. We associated an agent to each 

subsystem of the satellite. More precisely, the agency 

we developed is composed by the Camera agent, which 

manages the activities of taking pictures, the ADCS 

agent, which controls the Attitude Determination and 

Control System of the satellite, and the ORBCOMM 

agent, which manages the communication flows 

between Palamede and the ground station via the 

ORBCOMM transponder. The onboard electrical 

energy is provided by five body-mounted solar arrays 

and a Li-Ion battery assembly. By applying a semi-

regulated bus system topology, the nominal mode 

power is provided by the solar arrays; whenever extra 

power is available, it is used for batteries recharging, 

nominally discharged during eclipses. To take into 

account the power consumption in the scheduling 

activities, a manager agent is associated to this 

depletable resource: the Battery agent. 

In order to accomplish their tasks in a realistic 

scenario, agents should perform the activities reported 

in Fig. 4. The durations and power consumptions are 

those expected in the real spacecraft: as the total 

expected power produced by the solar arrays will be 



approximately 20 W and the on-board data handling 

subsystem continuously needs 9 W, it is clear that the 

management of the power resource is very critical. 

 

Constraints related to activities are temporal 

constraints, both global (when involving activities 

assigned to different agents) and local (when involving 

activities assigned to a single agent), and belong to the 

following classes: 

1) TimeConstraint(Activity a, char boa, int 

instant) – the activity a must be scheduled 

before or after instant if boa is respectively B 

or A; 

2) Eclipse Constraint(Activity a, char code, int 

min_dist, int max_dist) – a must be inserted 

before, after, during or out of eclipses 

according to the value of code (B,A,D, or X), 

with a certain distance within the range 

specified in last parameters; 

3) OverlapConstraint(Activity a, Activity b, 

boolean avoid) – if avoid is false a must 

overlap b; 

4) OrderConstraint(Activity a, Activity b, String 

code, int min_dist, int max_dist) – the order 

constraint between b and a depends upon the 

value of code (e.g. SAE means a Starts After 

the End of b). 

 

Constraints related to resources are global so they are 

handled directly by resource manager that checks the 

aggregate demand of power. 

Agent Activity Duration [s] 
Power 

Consumption 

[W] 

Camera On 90 3 

Grab 30 1.6 Camera 

GPS 30 2.3 

ORBCOMM On 600/120 1 

Transmit Photo 450 25.2 ORBCOMM 

Transmit HK 30 25.2 

Charge 300 9 
Battery 

Discharge 1800/150 -12/-18 

Read Attitude 30 0.5 
ADCS 

Control Attitude 120 3.8 
 

Fig. 4. Activities of the agents of Palamede. 

5. EXPERIMENTAL RESULTS 
 

We have performed several experiments giving to the 

scheduler some goals to be reached. These goals 

correspond to the activities to be performed by the 

satellite in a temporal horizon of two orbits: the 

number of photos to be taken, the number of data and 

HK (HouseKeeping) transmissions and the battery 

charging periods. Processing the high-level requests, 

e.g., take two photos, a special component of the 

scheduler infers all the low-level activities needed to 

perform them and defines the constraints among these 

activities. In the future the distributed planner will 

perform this operation. The indicators of performance 

of the system are the fraction of the successful 

schedules and the time required to reach a consistent 

plan. 

 

Fig. 5. A test schedule resulting from the global merging of local plans 



Fig. 5 shows an example of schedule that allows the 

spacecraft turning on camera three times for grabbing 

six pictures, and transmitting housekeeping data and 

photos respectively two and three times; moreover, the 

battery is recharged in eight periods of five minutes 

each. Since at the moment the agency is not able to 

manage the state of the satellite before and after the 

scheduling horizon, no order constraints among goals 

have been inserted and the distributed scheduler has to 

respect only temporal and resources constraints, as 

previously described. The proposed system finds a 

solution to this test case in almost the totality of trials 

(499/500) with an average time for finding a solution 

of about 8 seconds. It has to be remarked that the 

problem is characterized by 52 variables and almost 

200 binary constraints, so it is not trivial. 

In order to better evaluate the performances of the 

distributed scheduler, 192 scenarios have been created 

by combining the number of goal activities to be 

reached: number of periods of camera on could be 2 or 

3, number of photos to be taken could be 3, 5, 7 or 9, 

number of transmissions of HK could be 2 or 4 and 

those of pictures is comprised between 2 and 5, and 

number of charges could be 4, 6 or 8. The scheduler 

has to analyze 10 times (trials) each scenario. Tests 

were performed with a computer equipped with a 

Pentium III 500 MHz processor and 128 Mb RAM. A 

timeout of 3 minutes has been given to the system for 

solving each trial: whenever this limit was reached the 

trial was stopped and declared unsuccessful. About the 

60% of the attempts (1180 on 1920) gave consistent 

plans before the timeout. 76 on 192 scenarios have 

been always solved, while in 26 on 192 scenarios 

(~14%) a solution was never found. An analysis of the 

performances of the system has been done from the 

point of view of the number of activities required to be 

scheduled. Changing from 2 to 3 the number of periods 

during which the camera is turned on does not change 

significantly neither the percentage of successful cases 

nor the average solving time; the same happens when 

the number of battery charges is changed. 

The incidence on performances of the number of 

transmissions both of HK and of pictures is lower than 

that of the grabs. Fig. 6 and Fig. 7 show that the 

percentage of success decreases with the increasing of 

the number of transmissions requested, passing from 

73% to 47% for photo (for 2 to 5) and from 70% to 

50% for HK (for 2 to 4). The average solving time of 

success increases too, from 40 to 51 and from 37 to 53 

seconds, respectively. Globally, the performances are 

not getting worst so much by increasing the number of 

transmissions. This is a very important result because 

the activities involving transmission are the more 

expensive in term of power consumption, thus 

requiring the use of battery. This positive result 

demonstrates the efficiency of the maximum 

availability heuristic used in the local algorithm and 

also of the overall methodology for the management of 

the resource. 

 

Fig. 6. Performances versus the number of photo 

transmissions. 

 

Fig. 7. Performances versus the number of HK 

transmissions. 

The analysis of the performances related to grab 

activities (i.e., the actions of taking pictures) shows 

that both the percentage of failures and the average 

solving time increase with the number of photos 

required (Fig. 8). These activities are characterized by 

the shortest duration and very low power consumption 

but also by several constraints with external activities 

managed by other agents (red arrows in Fig. 9): 

according to the real mission plan, an attitude control 

action has to be done before two grabs and photo 

cannot be taken during eclipse. Grab is the most 

constrained activity, representing a very critical node in 

the network of relationship among actions. 

The introduction of the timeout is a heuristic that 

allows avoiding useless computation in case of 

impossible solution; as already explained, this is 

necessary because our adaptation of the standard AWC 

makes the global algorithm not complete. In order to 

evaluate the incidence of this parameter on the whole 

system, the 26 failed scenarios were considered again 

with a timeout of 5 minutes (instead of 3). With 7 trials 



for each scenario, the scheduler with extended timeouts 

has solved 15 out of 26 problems (~58%), proving the 

high sensitivity to this parameter of the system and the 

difficulty to set a general limit between hard and 

impossible scenarios. 

As already explained in previous sections, the proposed 

architecture could be very efficient facing faults and 

unforeseen events (e.g., modification of the mission 

goals or unavailability of a device). Whenever an event 

makes a local plan inconsistent, consequences upon the 

global one are expected. The multiagent paradigm 

allows solving this problem exploiting 

decentralization: the single agent could use its local 

CSP method in order to adjust the previous plan 

according the new scenario without changing others’ 

assignments. Whenever the solution to the problem 

requires an intervention at the agency level, the global 

AWC algorithm is used. Note that the same approach 

on two levels could be used also for the execution 

phase. 

 

Fig. 8. Performances versus the number of grabbing 

activities. 
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Fig. 9. Local and global constraints of the grab activity: 

the Camera agent activities are in the green set, those 

of the ADCS agent are in the blue one. 

 

6. RELATED WORKS 
 

A lot of works has been done with focus on the 

autonomy of spacecrafts. NASA’s Remote Agent 

probably represents the most relevant benchmark; it 

has been implemented on-board during the Deep Space 

One mission (1998) and it is able to plan, execute, and 

monitor the activities and recover from some failures. 

It has not a dedicated scheduler but one of its modules 

is an integrated planner/scheduler that generates a set 

of time-based event-based activities, known as tokens 

[1]. 

ASPEN and CASPER constitute other relevant 

approaches: the first is a planner/scheduler system 

realized for managing ground operation while the latter 

is its soft real-time version that performs a continual 

re-planning using the iterative repairing methodology 

[5][6]. 

The scheduler proposed in this paper is not comparable 

directly to these three systems but it is possible to 

recognize the same constraint-based interval approach 

of [7]. The main difference is that, in this approach, the 

variables are the starting and the ending time of 

activities. 

NASA is also studying extensions of the above 

architectures: the multiagent paradigm has been chosen 

to obtain relevant enhancements. In [7] an agency has 

been built starting from the planning level using the 

Hierarchical Task Network paradigm, whereas in our 

work the attention is currently focused on the 

scheduling and on the robustness allowed by the 

multiagent approach. 

 

7. CONCLUSION 
 

The preliminary validation of the proposed distributed 

scheduler is satisfactory, even if a more detailed 

analysis has to be performed. 

A simple distributed executor has been realized too 

with the aim of analyzing some fault-recovery 

procedures. The execution modules are completely 

reactive and no communication among them is present, 

similar to RAPS [14]. Whenever a local failure occurs, 

the execution modules tries to perform the activity 

again until the scheduled ending time is reached. 

Next steps of the work will be the improvement of the 

distributed executor and the implementation of 

complex fault-recovery procedures capable of taking 

full advantage from the multiagent paradigm. Last step 

of the project will be the creation of a distributed 

planner/negotiator that will complete the overall 

architecture. 
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