
AUTONOMY SOFTWARE ARCHITECTURE FOR LORAX
(LIFE ON ICE ROBOTIC ANTARCTIC EXPLORER)

Ari K. Jónsson(2), ConorMcGann(2), Liam Pedersen(2)), Michael Iatauro(2)), Srikanth Rajagopalan(2)

(1)Research Institute for Advanced Computer Science, NASA Ames Research Center, Mailstop 269-2,
 Moffett Field, CA 94035, USA, Email: jonsson@email.arc.nasa.gov

(2)QSS Group Inc., NASA Ames Research Center, Mailstop 269-2, Moffett Field, CA 94035,
Email: {cmcgann, pedersen, miatauro, srikanth}@email.arc.nasa.gov

ABSTRACT

The objective of the LORAX mission is for an
autonomous rover to navigate more than 100
kilometers on the Antarctic ice, while taking ice
samples and analyzing them for evidence of life. The
mission will provide important scientific results about
life in Antarctica, while also evaluating technology for
future Mars missions.

The LORAX rover operations will be entirely
autonomous, requiring a reliable autonomous control
system that can handle environmental uncertainties and
changes in operations goals. In this paper, we describe
a new autonomous rover control architecture, which
was developed for LORAX as part of a mission and
vehicle design study. The key notions in the
architecture are the use of a flexible plan representation
and continuous replanning to handle environmental
uncertainty. The autonomy software will also be used
early in the mission design process, to evaluate choices
such as battery capacity, by examining expected
outcomes of operations in varying conditions.

1. INTRODUCTION

LORAX is a robotic astrobiological study of the ice
field surrounding the Carapace Nunatak near the Allan
Hills in Antarctica. The study comprises a 30 km
traverse, followed by a 100km traverse. On each
traverse the ice will be sampled at over 100 sites to
survey microbial ecology and to record environmental
parameters.

Numerous factors drive the need for autonomy in the
LORAX mission. First, it will demonstrate robotic
science technologies applicable to future Mars mission,
and as such, must operate with limited human
oversight and interaction. Secondly, the LORAX
science goals require minimizing biological
contamination risk from human presence. Finally, the
mission takes place in a highly uncertain and dynamic
environment with limited resources, requiring the rover
to adapt its plan of action to ensure successful mission

completion, while maximizing the number of samples
analyzed.

The autonomy requirements from LORAX are shared
by many robotic exploration tasks. Consequently, the
LORAX autonomy architecture is a general
architecture for on-board planning and execution in
environments where science return is to be maximized
against resource limitations and other constraints.
Three key elements set it apart from other general
planning-execution architectures used for rover
operations:

1. Flexible plans describe families of plans having
the same structure and outcomes. This flexibility
increases the applicability of a plan in changing
environments and reduces need for replanning due to
minor variations.

2. Continuous replanning to do on-line plan
optimization. This allows the autonomy system to
seamlessly modify plans in response to outcomes that
differ from what was expected.

3. Resource envelopes bound expected resource
profiles. These envelopes provide better information
on the feasibility of candidate plans in flexible and
uncertain situations, and offer better search control
information during planning.

The backbone of the LORAX autonomy architecture is
EUROPA, a constraint-based planning framework.
EUROPA supports the description of temporal actions
and states, complex constraints and operations rules,
and complex resources. The underlying representation
and reasoning is based on dynamic constraint network
reasoning. The advantages of the constraint-based
approach include flexibility, generality, and improved
efficiency.

The EUROPA system uses new methods to bound
resource profiles, making it possible to reason
effectively about resource use in partial and flexible
plans. The LORAX autonomy architecture extends the
baseline technology to handle certain types of non-

Proc. of 'The 8th International Symposium on Artifical Intelligence, Robotics and Automation in Space - iSAIRAS’, Munich, Germany.
5-8 September 2005, (ESA SP-603, August 2005)

linear and time-dependent resources, such as internal
rover temperature and battery capacity.

Finally, the LORAX autonomy architecture defines a
planning and execution system that supports parallel
replanning and execution. Execution results and real-
world outcomes are used to generate alternative plans,
which then, if appropriate, are spliced in to replace the
current plan. This is made possible by the use of
flexible plans, and the propagation of information
through constraint reasoning.

The LORAX project is work-in-progress. The rover
hardware design is being finalized, and an initial
prototype of the autonomy architecture is being
evaluated. A full version of the autonomy software
will be ready for operations tests on the rover in early
2006. This will be followed by operations tests on
glaciers, and then two missions to the Antarctic in 2007
and 2008.

2. THE LORAX MISSION

The primary science objective of the LORAX mission
is to develop a map of the concentration and type of
organic material over a large varied area on the
Antarctic ice sheet. At the same time, robotic
exploration of the Antarctic ice sheet provides an
analogue of possible future search for evidence of life
on other planetary surfaces in the solar system, most
notably in the polar regions on Mars.

The geographic target of the LORAX mission is the
area around the Carapace Nunatak in Antarctica. In
this area, ice flows and prevailing winds meet at right
angles, providing a variety of surface and weather
conditions, which impact how much and what kind of
microbial organism is found in the ice. The rover will
circumnavigate two nunataks (which are mountains
that rise up through the ice sheet), in two separate
efforts, with the first traverse being 30 km, and the
second 100 km. On each traverse, the rover will pass
through windward and leeward areas, upstream and
downstream ice flows, as well as hard-packed snow
and blue ice. At regular intervals, the rover will collect
ice samples and analyze them. The sampling system
will take cores at three different depths, and bring the
samples to the analysis system. The analysis system
uses an ultra-violet spectrograph to estimate the
concentration of microbial life in each sample, and to
estimate the types of microbial life found.

The role of the rover is crucial in this mission. The
traverse and sampling must be done without risking
contamination from human operators, as even small
amounts of microbial contamination will significantly
skew sample results. Other sources of biological

material, in particular hydro-carbons, must also be
avoided, necessitating the use of clean power sources.
Finally, to demonstrate the applicability of the
technology to future deep space missions, the LORAX
mission must be operated in a manner consistent with
off-planet operations.

The LORAX rover is based on the NOMAD rover [1],
and inherits the basic drive and navigation systems. A
prototype of the LORAX rover is shown in Fig.1. To
provide clean renewable energy, the rover will use
solar panels and a wind turbine to generate electricity.
To handle periods without significant sunlight or wind,
the rover will have a battery with sufficient capacity to
keep it alive for a number of days. The primary
science tool will be a combination of a sample
acquisition system and an ultra-violet spectrographic
analyzer. The acquisition system is an arm that can
collect a suitable sample of ice and snow, and bring it
to the analyzer. The analyzer then crushes the sample
and spreads it out in an analysis box. A moveable
spectrographic sensor maps the distribution of
microbial life in the sample. The same sensor can then
also map the distribution of different types of microbial
organisms, such as photosynthesizing life, in the
sample. Once the sample has been analyzed, it is
ejected from the system.

Fig. 1. The LORAX rover prototype

The expected baseline is to collect at least 100 evenly
spaced samples on each circumnavigation. However,
unexpectedly high variations in the gradient between
samples might lead to additional samples, or re-
sampling. At the same time, the mission will be run
within a tight time limit, due to weather conditions in
Antarctica. If weather or operational delays preclude

the completion of the traverse and the collection of all
100 samples, the number of samples will be reduced, in
order to complete the circumnavigation goals.

3. LORAX AUTONOMY REQUIREMENTS

The need for autonomy in the LORAX mission is
driven by a number of factors. As an analogue for
future deep space missions, the mission cannot rely on
direct human operations, be it via physical presence or
tele-operations. As noted above, the mission science
goals are also highly sensitive to human interference,
due to danger of contamination. Finally, the mission
operates in a highly dynamic environment with a tight
deadline for completion. Changes in the environment
and rover operations results are likely to frequently
invalidate given plans, forcing replanning or plan
adjustments.

In comparison to other autonomous rover operations,
LORAX is in some ways simpler and in other ways
more complex. Navigation, which is often one of the
key complications in rover autonomy, is expected to be
fairly straightforward. The rover will largely follow a
pre-determined route to circumnavigate a nunatak, and
significant obstacles are expected to be rare. However,
the strict power and thermal constraints, the impact of
dynamic weather on energy levels and thermal states,
and the constant trade-off between sampling and
completing the circumnavigation give rise to a more
complex dynamic optimization problem.

At a high level, the goals of the autonomous control
software are straightforward. Scientists will specify a
set of goals, and a method for trading off goals as
needed. For example, the initial goals may be for the
rover to traverse a given 100 km path, taking and
analyzing samples at 100 evenly spaced locations,
where each location involves three samples, each
analyzed in four different ways, with two cleaning
cycles after each location and one cleaning cycle
between sample layers. The given trade-off strategy
will be to do as many locations as possible, but the
circumnavigation goal has priority. Throughout the
mission, the goals may change, as scientists adjust their
strategy for sample analysis at each location, and as
new location sample requests are added, possibly in
response to unexpectedly large changes in analysis
results.

The autonomous system manages all systems on board
the rover, and is responsible for maintaining safe
energy levels, safe thermal states, as well as to abide by
given operations constraints, while maximizing the
expected value gained from the remainder of the
mission.

Briefly, the key elements of the LORAX autonomy
requirements are as follows:

Objective maximization: The problem is an
optimization problem – maximizing the expected
outcome from the remainder of the mission. In
simplified terms, this means achieving the
circumnavigation goal while maximizing the number
of samples. However, additional complexities arise
from uncertainty and affected resources, such as power
and thermal states. Consequently, the safety margin, or
the likelihood of violating a critical constraint, must be
factored into the objective.

Dynamic environment: The environment is highly
dynamic. Most notably, the weather greatly impacts
rover operations, and in particular, the power and
thermal states. Forecast information will be available,
but clearly forecast will never be fully accurate, and
become less and less reliable as they look further into
the future. In addition, there are dynamic elements to
rover operations, in particular the drive times and the
time needed for sample analysis, which depends on
how much organic material is in a given sample.

Temporal planning: Time plays a key role in the
problem. All actions are durative, and few states are
steady states that can be held indefinitely. This means
that many limitations and expectations are specified in
terms of temporal constraints.

Complex resources: Power and thermal states are
complex functions and have a critical impact on
operations. The state values are impacted by many
types of activities, and also vary over time, without any
actions. Furthermore, both thermal and power states
may require planned actions to be postponed, modified
or cancelled, and for new actions to be added into the
plan, to avoid depleting the battery or freezing the
rover systems.

Execution and diagnosis: While the primary
emphasis of this work is on the higher-level reasoning
element, a robust execution component must be
provided. Actions may fail for a variety of reasons,
necessitating appropriate responses. This involves
identifying that an action has failed, identify a reason if
possible, possibly attempt a recovery action, and in the
worst case, enter a safe state and request further
instructions from engineers.

4. THE EUROPA PLANNING FRAMEWORK

The LORAX autonomy architecture is built on a
constraint-based plan representation and reasoning
framework. In constraint-based planning, actions and
states are durative, holding over intervals of time.

Each such interval is described by variables
representing the start and end times, and the various
parameters of the action or state in question. The
interval variables are connected by constraints, which
specify the legal value combinations for variables. For
example, a duration limit is specified as a constraint on
the start and end variables of an interval. If the
duration depends on action or state parameters, then
the variables representing those parameters are also
involved in the constraint.

The specific constraint-based planning framework used
in LORAX is called EUROPA (Extendible Uniform
Remote Operations Planning Architecture) [1].
Domain models specify interval types, i.e., action and
state types, along with configuration rules, which
generalize the notion of preconditions and effects. In
simple terms, a configuration rule consists of an
interval pattern, and an or-and statement about the
existence of other intervals and how they must be
related. To satisfy a configuration rule, for any interval
that matches the given pattern, there must exist suitable
“support” intervals, satisfying necessary relations, so
that the logical or-and statement is true. For example, a
very simplistic domain might define three action and
state types: at(loc), fly(loc,loc), and drive(loc,loc),
where loc parameters take on values from a set of
defined locations. Durative actions and states are then
described as holding over intervals using the syntax
holds(P,s,e) to indicate that predicate P holds between
times s and e. For example, holds(at(x),s,e) means that
at(x) is true between s and e. Note that since x,s and e
are variables, this statement can be made even when
the location and start and end times are not yet known.
A simple example configuration rule for this domain
would then be:

holds(at(y),s,e):
(holds(fly(x1,y1),s1,e1) ∧ y=y1 ∧ e1=s)

∨ (holds(drive(x2,y2),s2,e2) ∧ y=y2 ∧ e2=s)
meaning that in order for at(y) to start holding at time
s, there must have been either a fly or a drive action
with destination y that ended at time s1, which is equal
to s.

In EUROPA, any candidate plan gives rise to an
underlying constraint network. Constraint propagation
and reasoning techniques are used to determine the
consistency of the network, and to derive conclusions
about variable values being excluded from
consideration due to combination of constraints. To
build a valid plan, a search mechanism is used to
modify a candidate plan until a valid complete plan is
found. Between modification steps, the constraint
reasoning methods can be used to exclude invalid
options and to identify inconsistent candidate plans that
cannot be extended to complete valid plans.

The constraint-based planning framework is a natural
fit for the LORAX autonomy architecture, providing
temporal reasoning with durative actions and states that
expire. Recent extensions of the EUROPA framework
have added the capability to reason about complex
resources for flexible temporal plans. This new
capability provides the foundation for reasoning about
power and thermal resources for LORAX.

The resource reasoning in EUROPA is based on
bounding resource envelopes for flexible temporal
plans. The mechanism involved is a variation of the
configuration rules, but the consequences describe
resource events that cause a change in resource levels.
The result is that for any given candidate plan, there is
a set of partially ordered resource events. Resource
bounding methods, such as those described in [4], and
specifically the approach defined in [0], can efficiently
calculate bounds on possible resource values, covering
all possible plan instantiations. This can be used to
ensure that a flexible plan can be safely executed, or to
identify candidate plans that cannot be made into legal
plans.

5. LORAX AUTONOMY ARCHITECTURE

The LORAX autonomy architecture is in many ways
similar to traditional rover control architectures. There
is a high-level planning element, an execution element,
which includes a health monitor and recovery
capability, and a functional system interface element.
What sets the LORAX architecture apart from other
rover systems is that the high-level planning layer has
on-line optimization capabilities, and the tight
connection between the planning and the execution
layers.

Execution Plan DB

Candidate
plan DB

completed
plan

current plan

medium range

Planner

Execution
engine

S
y
s
t
e
m

next
actions

updated
state

“overlap”

changes constraints

long range

exec commands

update
exec
cmds

Future plan

commands

results

Health
monitor

Model
(activity and command

def’s, flight rules,…)

Command
requests

Fig. 2. LORAX autonomy software diagram

The architecture is shown in Fig. 2. There are three
main functional components: the high-level planner,
the health monitor and the execution engine. There are
two plans in the system at any time; a plan being
executed (the active plan), and a candidate future plan
(the plan being built). These two plans are based on
the same domain model, meaning that they share action
and state types, and configuration rules. However,
different levels of the plans may be at different levels
of abstraction.

EUROPA domain models can naturally represent
abstractions by having action and state types that
expand into more detailed actions and states. These
expansions are described as configuration rules. In
addition, approximations of resources and other
domain constraints can be represented for higher levels
of abstractions, as long as those approximations are
sound, i.e., don’t exclude valid plans.

This capability allows candidate and active plans to be
represented at different levels in the LORAX software.
A candidate plan will, at a very high level, be
completed to end of mission, thus ensuring that the
overall mission goals are being taken into
considerations when decisions are being made. A
candidate plan will then also have a more detailed plan
for the near future, thus taking into account
information available about near-term expectations, in
particular, the weather. An active plan will have the
same levels of abstractions as a candidate plan, as well
as an execution level, where rover commands are
specified.

The high-level planning system will, as in most rover
control systems, generate candidate plans for the
future, which then get turned into active plans for
execution. A key requirement for the LORAX planner
is that it be an optimizing planner; generating plans
that maximize the estimated expected value, in terms
of achieving mission goals. As noted above, the plan
evaluation for this optimization involves not only the
core science goals in the plan, but also the robustness
of the plan to dynamic outcomes.

The planning system will also continually work on
alternative candidate plans, using the most recent
information about resource levels and execution
outcomes. If a plan is found that is evaluated to be
notably better than the current plan, then the new plan
is spliced into the active plan, replacing most of the
current plan. Needless to say, this splicing must be
done at a point that is not yet being executed, which in
turn means that alternative candidate plans will have a
prefix that is common with the current plan. This on-
line replanning is a key element of dealing with the

highly dynamic and often uncertain environment in
which the LORAX rover will operate.

The execution system will traverse the active plan, and
expand current actions to rover commands that then get
sent to the rover systems. The expansion of actions
into commands is defined in a manner similar to the
configuration rules that specify other expansions and
safety rules. However, the expressiveness of the
execution expansion rules will be limited, so as to
ensure that no unbounded search is being done. The
notion of using the same kind of domain description
for planning and execution is part of the IDEA
architecture [5]. In fact, a version of IDEA will likely
be used to implement the execution engine.

The health monitor and other support modules are
similar to those found in traditional systems. However,
their interfaces will be defined in such a manner that
information is mapped into elements of constraint-
based plans, i.e., states, events or actions.

6. PROTOTYPE FOR MISSION SIMULATION

For LORAX, the close interaction of weather and
operations on mission-critical resources of heat and
energy make competent reasoning about resources
essential and challenging. To ensure the selected
technology could meet the requirements of this
dynamic domain, and to feed into the system design
effort, it was decided to develop a prototype for
mission simulation. The product of this work could
then be applied to evaluate alternate system designs,
with the particular goal of identifying appropriate
power generation and storage specifications.

Fig. 3. A schematic of the prototype mission software
and how it is used to provide simulation-based

evaluation of design alternatives.

The prototype focused on the main functional areas of
mobility control and instrument management within
the context of a resource-constrained robot in a
dynamic environment. The simulator system design is
depicted in Fig. 3.

The inputs are: 1) a domain model describing the
mission systems, sub-systems and their interactions; 2)
a mission profile consisting of a temporally ordered
sequence of sampling goals; 3) a set of system design
parameters used to explore design variations primarily
in terms of battery, wind-turbine and solar-panel
specifications; 4) wind and solar data taken from on-
site measurements; 5) a terrain data set indicating
elevation and terrain characteristics for a known path.
Input data is translated into a problem specification and
fed into the simulator. The output of the system is a
trace of simulated execution, providing temporally
qualified values for state and action throughout the
mission.

The simulator consists of: 1) a plan database to store
and manage the past, current and future states and
actions as simulation proceeds; 2) a planner to turn
mission goals into executable plans; 3) an environment
monitor to provide periodic update of actual and
expected sensor data; 4) an executive responsible for
scheduling commands for execution according to the
plan as the simulation clock progresses. The planner,
environment monitor and executive are distinct
configurations of a problem-solving framework
provided in EUROPA. The basic operation of the
simulator is that at each clock tick the planner,
execution monitor and executive are sequentially
invoked to update the plan database. The planner is
configured to conduct task decomposition and
refinement to meet goals, over a full mission planning
horizon. The environment monitor is configured to
bind weather parameters for the current clock time
based on real weather data. Note that this information
is only made available at the point of execution so that
it does not provide any foresight to the planner that
would be absent in real life. The environment monitor
also binds certain operational parameters (e.g. the end
times of uncontrollable activities) via random selection
within a given range. The executive makes scheduling
decisions to start and stop controllable activities at the
current clock-tick based on current and future resource
levels.

The simulator prototype currently provides a detailed
simulation for a 24 hour mission cycle. The model
handles dynamic sample acquisition and analysis
allowing for variations in the number of cleaning
cycles required and the type of scanning. It models the
energy production from wind and solar sources. It
models energy consumption for basic system

operation, as well as task-driven activities such as
driving and sampling. Furthermore, the thermal impact
of external temperature and heat dissipation due to
system operation are integrated to compute resource
envelopes for heat and temperature which are
employed in heuristics for decision making and as
constraints on operation.

7. FUTURE WORK

The current status of the simulator demonstrates the
representational sufficiency of the model-based
planning technology and the technical feasibility of a
planning–based simulation system. However, in order
to deliver the expected benefits we must address the
following extensions:

1. Simulator completion - while the basic
components required for simulation are now in
place, we must complete the model development
to accurately reflect the energy and heat
production and consumption formulae currently
encoded and available as MatLab functions. This
will yield greater accuracy for the simulator.
Currently the simulation operates on a scaled
down version of the mission (over 24 hours
instead of 30 days) to expedite testing. Once the
model is complete we will extend simulation runs
for full missions.

2. Develop an optimization algorithm - the simulator
is designed currently to find any plan that will
accomplish mission objectives given the input
system specifications. It does not yet seek optimal
plans. As noted above, mission decisions will be
made in a way that maximizes the expected value
in terms of science goal achievements. Taking this
optimization into account for scenario evaluation
can help avoid overly pessimistic expectations in
terms of outcomes.

3. Conduct simulation-based system evaluation - we
will apply the simulator to help determine certain
aspects of the rover design. A prime example is
determining the battery capacity needed to reliably
accomplish the mission while avoiding having
unnecessarily large batteries. To accomplish this, a
variety of simulations will be run for particular
system designs, and a range of design parameters
will be explored to find the set that work best.

The simulator is important in that it drives early
technology feasibility and development, and it offers
the chance of leveraging the autonomy software during
the system design process. However, it is not the end
product. Rather, the components of the simulator,
notably the planner, the executive, the model, and the
plan database will be integrated to provide the on-

board autonomy architecture described in Section 5.
The main requirements to accomplish this are to: 1)
integrate actual system monitoring to replace the role
of the environment monitor; 2) integrate a health
monitor which can raise events for failures occurring;
3) integrate hooks for invocation of system control
api’s for command execution (as updates are made by
the executive; 4) conduct field tests for the autonomy
software for nominal and off-nominal execution paths.

Given the incremental nature of the development
process for the project overall, it will be important to
continually evolve the domain model to adapt to
alterations in component and system behaviours.

8. CONCLUDING REMARKS

The LORAX architecture is closely related to what is
being used in LITA (Life In The Atacama desert).
That rover control system uses the IDEA architecture,
which is in turn implemented on top of the EUROPA
framework. In IDEA, the execution of plans is viewed
as a reactive, short-term planning problem, allowing
for more natural, more compact, and more powerful
sets of rules for executing plans. As for any such
approach, there is some concern about providing
guaranteed response times when execution steps may
lead to exhaustive and expensive search for plans.
However, in LORAX, the expressivness of the
execution expansions are limited, ensuring a smooth
expansion and timely execution. Furthermore, in LITA,
a variety of heterogeneous components are integrated
to accomplish the overall autonomy capabilities. In
addition to the IDEA executive, TEMPEST [8] is used
for on-board planning, and TDL [7] is used for
instrument management. In contrast, LORAX employs
a single model and supporting plan database for all
aspects of autonomous control, offering a simpler
development and deployment architecture which
should prove less error-prone in integration

Another closely related planning and execution system
is CASPER [2]. In CASPER, the generated plans are
fully instantiated, meaning that deviations from
expected outcomes and environmental impacts can
more easily make the plan incorrect. When that
occurs, the high-level planner gets invoked, to repair
the plan flaw found. The core notion of this repair is
similar to what is in the LORAX architecture, although
in LORAX, the repairs are done pre-emptively when
possible, and the use of flexible plans reduces the
number of expected execution failures. The trade-off
is that calculating resource levels for a flexible plans is
significantly more complex than it is for fully
instantiated plans.

The LORAX mission pushes the capabilities of on-

board rover control software in a number of ways. The
environment is highly dynamic and changes have
significant impact on plan execution success and how
mission goals are best achieved. The critical resources,
thermal and energy states, are more complex than what
current systems handle. The mission goals are given in
terms of an optimization problem, which must be
solved on the fly on board the rover. At the same time,
the traditional focal points of rover control software,
navigation and localization, are fairly straightforward
for LORAX.

The architecture described here is not unlike some
existing software systems and architectures. However,
it does identify a number of novel approaches for
solving the above-mentioned problems. In this paper,
we have provided a glimpse into the ongoing work on
the LORAX autonomy framework, but a great deal of
work remains to be done. As work progresses, more
concrete definitions of the architecture and details of
implemented algorithms will be forthcoming.

9. ACKNOWLEDGEMENTS

Funding for this work was provided by NASA’s
Astrobiology and Science for Exploring Planets
(ASTEP) program, with additional funds from NASA’s
Intelligent Systems (IS) program.

10. REFERENCES

1. D. Apostolopoulos, M.D. Wagner, B.N. Shamah,
L. Pedersen, K. Shillcutt, W.L. Whittaker,
“Technology and Field Demonstration of Robotic
Search for Antarctic Meteorites” in International
Journal of Robotic Research, special Field & Service
Robotics issue, November 2000.

2. T. Estlin, G. Rabideau, D. Mutz, and S. Chien.
Using Continuous Planning Techniques to Coordinate
Multiple Rovers. In IJCAI Workshop on Scheduling
and Planning, Stockholm, Sweden, August 1999.

3. J. Frank and A. Jónsson. Constraint-Based Interval
and Attribute Planning. Journal of Constraints Special
Issue on Constraints and Planning. October, 2003.
Volume 8. Number 4.

4. P. Laborie, “Algorithms for propagating resource
constraints in AI planning and scheduling: existing
approaches and new results”, Artificial Intelligence,
Volume 143 , Issue 2 (February 2003) 151 - 188

5. N. Muscettola, G. A. Dorais, C. Fry, R. Levinson,
and C. Plaunt, "IDEA: Planning at the core of
autonomous reactive agents," in Proceedings of the 3rd
International NASA Workshop on Planning and
Scheduling for Space, October 2002.

6. N. Muscettola: “Incremental Maximum Flows for
Fast Envelope Computation”. Proceedings of the 13th

International Conference on Automated Planning and
Scheduling, 2004: 260-269

7. R. Simmons and D. Apfelbaum. "A Task
Description Language for Robot Control", In
Proceedings of Conference on Intelligent Robotics and
Systems, Vancouver, 1998

8. P. Tompkins, A. Stentz, and W.L. Whittaker,
"Mission-Level Path Planning for Rover Exploration,"
Proceedings of the 8th Conference on Intelligent
Autonomous Systems (IAS-8), March, 2004.

