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ABSTRACT 
 
In this paper a method to select a set of preliminary 
space system configurations is proposed, based on a 
two-player multi-objective optimization. During the 
concept definition of a space system a key point stays 
in reducing the number of possible alternative paths to 
fasten the next feasibility study. The problem is here 
modelled as a multiobjective global optimization and 
managed by using The Evolutionary Programming 
techniques. The main issues related to the classical 
Evolutionary approach and the particular mixed search 
domain are overcome by means of the Game Theory 
combined with Possibilistic and Fuzzy theory. The 
simulation results, applied to the ESA Mars Express 
Mission scenario are offered.   
 

1. INTRODUCTION 

The so-called pre-phase A is devoted to accomplish a 
space mission feasibility study: within that phase a 
team of experts starts from the scratch the design, 
taking into account the requirements coming from the 
costumers, together with the mission objectives. Each 
team member sizes a particular aspect of the mission, 
constrained by the on going design of the other system 
parts. The information exchange among the team 
members depends on the approach selected to deal 
with the design process: surely the Concurrent 
Engineering approach is currently turning out to be 
well suited to gain, quickly, effective solutions [4]. 
Nowadays space missions are growing in complexity 
in terms of available technologies and because of very 
ambitious scientific goals. The European Space 
Agency spacecraft to Mars, Mars Express, which is 
now orbiting around the red planet; the two Mars 
rovers Spirit and Opportunity from NASA, still 
operative; the joined NASA, ESA, ASI Cassini-
Huygens mission to Saturn and Titan, completely 
successful as recently reported, are few examples on 
the great challenge the space mission design  currently 
offers.  Although efficient, the Concurrent Engineering 
approach cannot prevent the preliminary study to start 
from “first guess” configurations that could give rise to 
bottlenecks during the sizing process. Therefore, a tool 
that allows detecting good “first guess” high level 
configurations according to several criteria having as 
inputs qualitative information only such the mission 

objectives and requirements are, would represent a 
powerful help to speed up and efficiently address the 
pre-phase A sizing process. The scientific literature 
offers some works related to the space mission design 
automation, all of them related to the feasibility study 
process [2],[3].  
This paper, on the contrary, proposes an algorithmic 
architecture, to perform a high-level configuration 
selection to be given to the pre-phase A study as an 
input. The process is here modelled as a multi-
objective optimization and is faced by means of the 
Evolutionary methods, to both answer the global 
optimality requirements and to deal with the mixed 
nature of the treated quantities [15], [16], and [18]. To 
cope with the high degree of uncertainty that a very 
preliminary sizing phase intrinsically presents, a large 
number of optimization criteria are here taken into 
account to rank the admissible configurations. 
However, a large number of criteria make the 
traditional architecture of the Evolutionary Algorithms 
very heavy. Moreover, the criteria modelling can be 
hardly treated by applying the conventional algorithms 
because of the lack of quantitative information at the 
very beginning of the process. To cope with the 
highlighted issues, the Evolutionary Algorithms are 
here supported by methods coming from the Game 
Theory, the Possibilistic Theory and the Fuzzy Logic 
areas [20], [21]. In particular, the Game Theory is a 
fundamental part of the search algorithm. The 
Possibilistic Theory and the Fuzzy Logic support the 
modelling process, together with a statistical approach. 
The current paper will focus on the optimization 
algorithm, the criteria modelling is reported in [1]. A 
co-evolutive scheme is proposed with two 
populations/players in charge of different search areas, 
partially overlapped; communications and negotiation 
protocols are proposed to model a partial collaborative 
strategy. Populations are focused on a prefixed subset 
of the criteria vector and would optimize its own 
criteria if no collaboration between the players 
occured. A collaborative strategy makes the players 
look for the common utility, represented by the entire 
criteria set. According to the proposed scenario, the 
space system design, the selected criteria vector is six-
dimensional. The proposed approach is anyhow, 
widely applicable.  
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2. THE THEORETICAL BACKGROUND 

The theoretical background leans on the Pareto 
Optimum definition [6], [7]. The multiobjective 
optimization branch offers different techniques to 
succeed in catching the front, that differ depending on 
the search strategies and the solution ranking 
methodologies: among them the Pareto-based ranking 
sorts the solution according to a dominance metric; the 
Aggregation function reduces the criteria vector to a 
scalar function by summing/multiplying the criteria 
vector elements previously weighted [6]. The Game 
Theory is also applied to deal with multicriteria 
decision making, specifically whenever multiple 
decisioners are involved in the scenario [8]. The Game 
Theory focuses on the players’ interaction strategies 
selection to visit different areas of the criteria space. 
The interactions among players define the applied 
protocol. The Game Protocols, strictly related to the 
presented work, are [9]:  
 
Not-cooperative (Nash): The Nash equilibria are the 
solutions detected with a Not-cooperative Protocol 
strategy. The Nash optima turn out from a non-
cooperative multiple objective optimisation. A Nash 
strategy asks for players who optimize his/her own 
criterion only, focusing on his/her own payoff; each 
player can move in a restricted search area, as he/her is 
in charge of a sub set of the x problem variable vector. 
While playing, each player assumes the subset of the x 
vector, different from his/hers, as fixed. As soon as no 
player can further improve his/her payoff, the game 
equilibrium is reached.  Formally, given the criteria 
vector f=[ ),( 211 xxf , ),( 212 xxf ], by assuming a two-
player scheme - p1 on )x,(xf 211 , p2 on )x,x(f 212  -  
and by applying a not-cooperative strategy, the point 
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Cooperative (Pareto): Whenever each player can 
search in the entire x space and the others choices are 
completely visible the players are said to be 
collaborative and better solutions than those detected 
with the not-cooperative strategy are expected. The 
cooperation entails that each step in the search space is 
globally approved to converge to common goal. The 
detected solutions belong to the Pareto front and the 
Pareto Optimum definition. The set of Pareto solutions 
ask for some additional sorting technique to rank them. 
On the other hand, the set of Nash solutions could be 
either small or even empty (the Nash equilibria are 
fixed points of a map and they may not exist without 

additional conditions). Generally speaking the Nash 
equilibria differ from the Pareto solutions [9]. 
According to the Game Theory approach, the protocol 
better suited for a given scenario depends on the 
application itself and, obviously, on the interaction to 
be modelled. In [13] an example is reported for a not-
cooperative protocol application, connected with a 
Genetic Algorithm on a two-player scenario; a 
cooperative case is reported in [19].  
As the global optimization is well managed by 
evolutionary algorithms and the presence of mixed 
domains is accepted they are the best candidate to 
connect with the Game Theory approach to deal with 
the distributed optimisation problems: by varying the 
game protocol, different solutions can be detected and 
several schemes of interaction among the decisioners 
involved in the real problem to face can be visited to 
highlight their effects on the final solutions. In the 
followings the Genetic Algorithm together with 
different game protocol is applied to the current 
problem. 
 

3. THE CONFIGURATIONS PROBLEM IN 
SPACE MISSION DESIGN 

 
A generic space mission scenario, with a discrete level 
of complexity, is here considered:  an interplanetary 
mission with at least two modules, an orbiter and a 
lander, which can separate in a certain phase of the 
mission, to perform their own tasks is assumed to be 
the general framework. The Cassini Huygens mission 
could be a typical reference. 
At the very beginning of a space mission design a very 
small set of data are available, coming from the given 
requirements, the mission objectives and some possible 
constraints coming from the customer. More 
specifically they are: 

• The target planet  
• The set of possible launchers 
• The set of possible trajectories from the 

Mission Analysis 
• The threshold on the maximum admissible 

wet mass 
• The mission lifetime (included transfer) 
• The time window devoted to science 
• The number/type of on-board scientific 

instruments  
 

A subset of the possible high level configurations is 
looked for, selected according to a certain criteria 
vector. Therefore, the x vector representative for the 
problem variables, that define a generic configuration 
includes: 

• The phase in which the orbiter and the lander 
separate, and the split of mass  



 

• The subsystems configuration for each 
modules (power system, propulsion type, 
ADCS architecture) 

• The selected launcher/s 
• The selected mission analysis (Trajectory) 
• The planetary capture performed either by 

chemical propulsion or aerocapture at target 
planet 

• The aerobraking strategy either applied  or not 
 

The set of final solutions is, obviously highly sensitive 
to the optimization criteria selection: the more 
multidisciplinary they are the more robust and reliable 
the results will be. Therefore the criteria vector 
includes the payload mass, the reliability the adequacy 
of the power and ADCS subsystems, the adequacy of 
the launch strategy and of the mission analysis 
(trajectory) maximisation, as listed hereinafter (2): 
 

max G=[1 2 3 4 5 6]               (2) 
 

1. Payload mass 
2. System reliability 
3. Adequacy of power subsystem 
4. Adequacy of attitude subsystem 
5. Adequacy of launch strategy 
6. Adequacy of trajectory analysis 
 

The mapping from the x hyperspace into the G 6D 
space opens the modelling issues raised from the 
particular treated scenario: no classical preliminary 
sizing analytical formula can be directly applied 
because of lack of inputs. The Possibilistic Theory is 
here applied to model the causal dependency of the 
power and ADCS adequacy from the x and the mission 
inputs [21]. Dedicated FLC have been implemented to 
connect the launch strategy and trajectory analysis 
adequacy to the x and scenario input vectors [18], [20].  
The former set of criteria should be enlarged to better 
model the multicriteria real process: as example a 
criterion in charge of evaluating the scientific return 
level obtained with a selected x should be added.  IN 
the current work a six-criterion global optimization is 
faced, solved with an Evolutionary approach: each 
genetic individual, made of numeric items and 
discrete/linguistic items (e.g. genes declaring which 
type of launchers are used) identifies a specific 
configuration. The aim is to find global optima with 
respect to all the six criteria; the global Pareto front is 
looked for. Although a simple cooperative strategy 
seems to be the choice to be done, the large number of 
criteria may suggest that a single-population 
Evolutionary Algorithm would probably encounter 
several issues in performing the search.  

 

 

4. THE ALGORITHM 

Three different Game Protocols can be selected in the 
proposed architecture: 

• Two-players not-cooperative game  
• One-player cooperative game 
• Two players semi-cooperative game 

The non-cooperative protocol makes the algorithm 
converging around the Nash Equilibrium. The final 
population is a “cloud” near the actual Nash 
Equilibrium because of the insertion of diversity 
operators, which maintain sparsity in the populations. 
Two populations communicate each other by means of 
genes exchange according to modalities similar to the 
aforementioned Nash Genetic Algorithm [3]. 
The Cooperative protocol is a classic multiobjective 
algorithm for Pareto front solutions identifications. The 
semi-cooperative protocol has been specifically 
implemented within the current work. It foresees two 
populations-players, having different, distinct criteria 
similarly to the not-cooperative protocol; however a 
sort of “links” between players is preserved. These 
links, called communication protocols, enhance the 
negotiation between players: therefore, the players not 
only try to optimize their own criteria while assuming 
the other players’ choices as fixed, but they partially 
take into account the other players’ criteria 
optimization. The final aim is to tend to Pareto 
solution, taking advantage from the search locally 
performed by each agent. The comparison between the 
cooperative and semi-cooperative are offered in the 
followings 
The architecture of the proposed semi-cooperative 
algorithm is firstly reported. As already pointed out, a 
two populations-players scheme is adopted, and a 
communication channel for data exchange exists. The 
data flow on the channel is ruled by the negotiation 
mechanism, based on three tools: 
 

• Elitism 
• Genes exchange 
• Criteria flip 
 

Elitism: The Elitism is a classic technique to improve 
the Genetic Algorithm performances [14]. Anyhow, 
beyond its traditional goal, the Elitism has an 
important role in gaining a common goal in a multiple 
players’ scenario. The local populations evolve 
internally, each visiting a subset of the search space 
related to the criteria subset the player is in charge of: 
each population is called Internal population. A further 
External population, with no evolutionary mechanism, 
plays the role of attractor, being the basin for some 
elements coming from the two Internal populations 
selected according to their global dominance score; 
elements sampled from the External population seed 
the two Internal to partially lead the local search 



 

process. The Internal population individuals evolve 
according to their own criteria; the more they belong to 
the complete G vector front, the more they are attracted 
into the External population. The frequency for the   
resource-consuming External attraction mechanism 
occurrence is less than one generation loop. The 
External Internal genetic material reinsertion 
provokes, in the Internal search mechanism, the 
presence of a new attractive basin, representative for 
the entire G optimization success.  The x subset, lead 
by the local criterion attraction, feels a sort of 
perturbing effects towards the global optimum area.  
Gene Exchange: this kind of communication ensures 
that at the end of each generation each player’s 
knowledge about the others is updated; given two 
individuals from population 1 and 2 respectively, 
correspondent genes values are exchanged according to 
the role each gene plays in the local criteria 
computation; fig.1 offers the sketch of the process [13]. 
Criteria flip: This mechanism is based on a specific 
concept of distance: the distance among players. The 
more the two populations are similar in the x 
configuration space the nearer the populations are.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1 General Architecture: communication 
mechanisms in the semi-cooperative protocol 

  
Whenever a threshold is overcome the subset of 
criteria are flipped between the players: the flip 
frequency is upper bounded: the flip mechanism makes 
the local population been ranked from the other player 
point of view. The distance between players can be 
controlled, but this mechanism should be carefully 

tuned, being the algorithm convergence very sensitive 
to it.  
 
According to each population evolution, the principal 
search operators are applied (e.g. mutation, crossover, 
genes exchange). The stop criterion is built to monitor 
quantities settled to evaluate the local player trends 
from a global point of view. 
 

5. VALIDATION AND TESTING 

The test functions are taken from [15], [16], and [17]. 
Here some significant examples are proposed, focused 
on convex and no convex Pareto fronts. In tab. 1 the 
main algorithm parameters are listed. It has to be noted 
that, for semi-cooperative protocol the active 
individuals are double with respect to the cooperative 
scheme, but the generation number is halved. 

 
Tab. 1. Test 1/2 parameters 

Test N.1/2 (Semi-cooperative)  

Evaluated generations 100  

External population dimension 100 

Internal pop. 1 and 2 dimensions   20 - 20 

Test N.1/2 (Cooperative)  

Evaluated generations 200  

External population dimension 100 

Internal population dimension   20 
 
The first two tests, propose the following optimization 
problem [15]:  
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m=30, while the variables moves in the 
]1,0[=ix hyperspace. The Pareto front is convex and 

it is built with g=1. In fig. 2 the comparison between 
cooperative and semi-cooperative is presented, in the 
criteria space. The cooperative strategy clearly reveals 
to overcome the semi-cooperative approach; however, 
the semi-cooperative consistently approaches the 
Pareto front, with well-spread solutions. 
The second test function is built with [16]: 
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 Internal parameters assume the values: m=30, while 
the search hyperspace is ]1,0[=ix . The Pareto front is 
non-convex and it is built with g=1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Comparison between cooperative and semi-
cooperative for a convex Pareto front 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Comparison between cooperative and semi-
cooperative for a concave Pareto front 

 
In fig. 3 the comparison between cooperative and 
semi-cooperative is offered, in the criteria space. The 
cooperative strategy reveals to overcome the semi-
cooperative approach once more; however the semi-
cooperative is almost coincident with the cooperative 
result, with respect to distance from Pareto Front of the 
best individuals. Still a definitely worse behaviour 
according to sparsity is experienced. 

The next test highlights the difference between the 
Nash Equilibrium and the Pareto Front. It is really a 
simple test, but its Nash equilibrium is analytically 
known. The task is to minimize [13]: 
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The  Nash equilibrium is equal to: 

)]3/7,3/5(),3/7,3/5([ 21 ff  =[0.8840, 0.8849].  
 

Tab. 2. Test 3 parameters 
 

Test N.3 (Semi-cooperative)  

Evaluated generations 100  

External population dimension 100 

Internal pop. 1 dimension (f1)   20 

Internal pop. 2 dimension (f2)  20 

Test N.3 (Cooperative)  

Evaluated generations 200  

External population dimension 100 

Internal population dimension (f1,f2)  20 
 
In tab. 2 the main parameters for each protocol are 
presented. Fig. 4 shows that the semi-cooperative 
strategy is definitely comparable to the cooperative 
approach.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Comparison between cooperative and semi-
cooperative for test 3 

 
As it can be seen, the Nash Equilibrium stays on the 
Pareto Front.  
The test campaign showed that until the criteria vector 
dimension is small, the traditional single player 
architecture, corresponding to the cooperative strategy, 
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performs definitely well, and the semi-cooperative is 
hardly comparable. However, the semi-cooperative 
architecture reveals its benefit as soon as the criteria 
vector dimension increases, as the next paragraph 
highlights.  

6. A CASE STUDY IN SPACE MISSION 
DESIGN 

The Mars Express spacecraft, launched in June 2nd, 
2003 is made of an orbiter and a little lander of about 
71 kg. In tab. 3 the main MEX features are 
summarized: 
 

Tab. 3. MEX features: real mission 
 

Target Planet Mars 
Total wet mass (launch) 1120 kg 

Orbiter mass - Lander mass 1049 – 71 kg 
Payload mass 116+lander kg 

Lifetime 3.08 years 
Instruments for Operative 

phase (around Planet) 
8 

Launch Date June 2nd , 2003 
Launcher Soyuz-Fregat 

Capture and reaching of the 
final orbit 

Impulsive chemical 
manoeuvres 

Power plant based on Solar array wing (SAW) 
Propulsion Chemical (CP) 

Attitude during operative 
phase 

3 axis 

Separation Before capture 
 
Data specifically identifying the MEX scenario at the 
very beginning of its designing process are given in 
tab. 4. Those quantities correspond to the first list 
given in §3 to start the presented tool. 
 

Tab. 4. MEX input scenario 
 

Target planet Mars 
Max. admissible wet mass 1120 kg 
Total  maximum lifetime 3.08 years 

N. instruments  8 
Starting date for temporal 

scanning 
 January 1st, 2003 

 
The simulation based on the semi-cooperative protocol 
detected 63 non dominated solutions; the dominant 
solutions ranking is performed according to the 
distance from the Utopian point, on an n Euclidean 
metric basis: the lower the score, the nearer the 
solution to the Utopian point. Among the others three 
dominant solutions are quite similar to the MEX both 
in the criteria and variable hyperspaces. The nearest is 
given in tab.5 (17th on 63).  The payload mass 
approaches the MEX; although the selected launcher is 
different, its performance almost match the Soyuz ST 
features; the power plant and propulsion types 

correspond. The trajectory parameters are similar, 
although the transfer time is longer than the MEX 
which is of about 180 days. The tool selects a 
separation strategy completely different from the real 
mission: the MEX separation occurred before the 
planetary capture. 
 

Tab. 5. The Nearest to real MEX (17th of 63 Pareto 
solutions) 

 
Distance from utopia 0.62 

Target Planet Mars 
Total wet mass (launch) 1120 kg 

Orbiter mass - Lander mass 970.6 – 149 kg 
Payload mass 206. 26 kg 

Lifetime 3.08 years 
Instruments for Operative 

phase (around Planet) 
8 

Launch Date June 2003 
Launcher Soyuz ST-Fregat 

Capture and reaching of the 
final orbit 

Impulsive chemical 
manoeuvres 

Power plant based on Solar array wing (SAW) 
Propulsion Chemical (CP) 

Attitude during cruise  Spinning 
Attitude during operative 

phase 
3 axis 

Separation On the final orbit 
Intermediate V∆  0≈ km/s 

Departure C3  8.85 22 / skm  
Arrival C3 7. 31 22 / skm  

Transfer Time 201. 25 days 
 
Those solutions with lower score according to the 
Utopia point distance (those placed before the former 
17th solution) select the aerobraking as the main 
manoeuvre to lower the planetary orbit apoapsis: the 
aerobraking allows lowering the propellant masses, 
leaving a greater percentage to be exploited for 
payload accommodation. The aerocapture manoeuvre 
is selected too, but by solutions higher scored than the 
17th: the aerocapture allows a propellant mass saving 
even larger than the aerobraking, but has the main 
drawbacks coming from the heat shield to be designed 
to protect the system from very high heat loads 
experienced during the atmospheric phase. Moreover, 
the aerocapture manoeuvre never occurred in a real 
mission, making the reliability index definitely low. 
 A simulation run with the cooperative protocol is 
reported too, to show the benefits of the proposed 
semi-cooperative strategy as soon as the criterion 
vector is enlarged. The population dimension is settled 
on 20 individuals (Semi-cooperative has obviously two 
populations-players), Elitism is activated, and the 
evolution stops at the generation number the stop 
criterion is satisfied whenever the semi-cooperative 
protocol is selected. Specifically the generation 
number is 101. The Elitism mechanism is active. 



  
Tab. 6. Comparison between the Coop. and Semi-coop. 

protocols in MEX simulation scenario 
 

Protocol Coop. SemiCoop
Number of selected solutions 50 63 

Min distance from Utopia point in 
the final selection 

0. 59 0. 53 

Max distance from Utopia point in 
the final selection 

1. 37 0. 99 

 

 
Fig. 5. Selected non-dominated individuals: 

distribution with respect to distance from Utopia 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Minimum and mean distance from Utopia for 
Player 1 in semi-cooperative simulation 

 
Table 6 summarizes some interesting data coming 
from fig. 5: the cooperative strategy selects spread 
solutions but lightly worse than the semi-cooperative 
in terms of distance from the 6D Utopia point: the  
semi-cooperative shows smaller distances range (max-
min), more shifted towards the Utopia point. However, 
it cannot be stated that the semi-cooperative finds 
better solution than the cooperative strategy, even 
though less spread. It means only that at the 101st 
generation the semi-cooperative seems behaving more 
efficiently: letting the cooperative search keeping 

running, the population possibly converges to the 
Utopia point. The semicooperative reveals to be faster 
in finding good solutions. A possible reason why, may 
be that the less numerous the criteria are the more 
effective the search is: the semi-cooperative by 
splitting the criteria into two players, focuses each 
player’ effort on a restricted search hyperspace, better 
exploiting the evolutionary benefits.  In fig. 6 the Mean 
and the Minimum distances from the Utopia point are 
reported, versus the generation number for Player 1, as 
example (player 2 one is almost analogous); red colour 
refers to distances calculated in the 6-dimensional 
criteria space, blue colour to distances calculated in the 
player criteria space (3-dimensional). Fig. 7 shows the 
same quantities according to the cooperative strategy 
(single-player scenario): the potential of the semi-
cooperative approach with respect to the cooperative 
strategy is clearly evident. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Minimum and mean distance from Utopia in 
cooperative simulation  

 
The semi-cooperative trends, however, show some 
nervous peaks in the minimum distance trend too: to 
correctly tune the communication mechanism among 
players is surely the most difficult task. It can be said 
that the semi-cooperative has surely the benefit of 
significantly simplifying the local evolution of each 
player’s populations, letting the evolution speed 
increasing, but it asks for a smart and fine tuning of the 
communication operators. 
 

7. CONCLUSIONS 

The paper gives the theoretical background used to 
build the presented tool for preliminary high level 
configuration detection. The set of optimal 
configuration identification as input for the space 
mission feasibility study is introduced and formalized 
as a multi-objective optimization. Particular emphasis 
is given to the Game architecture selected to face the 
problem, focusing on the protocol selection. The 
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proposed semi-cooperative protocol is described and 
some tests run on functions from literature are 
discussed. Simulation results obtained from a real 
space mission design problem are reported, to highlight 
the validity of the proposed architecture to deal with 
multiobjective optimisation problems with large 
criteria vectors. It has been underlined that the 
communication protocol tuning is the key element to 
obtain good results. Moreover, the logic for the criteria 
distribution among players seems to be another key 
point to be further analyzed. Although it has not been 
described in this paper, which almost focuses on the 
algorithm itself, a considerable modelling effort has be 
done, to characterize configurations in a very 
preliminary scenario, strongly affected by uncertainties 
and lack of data. The selected modelling techniques 
highlighted good performance in adequately manage 
scenarios with a discrete level of complexity. The 
modelling processes here implemented, based on the 
Possibilistic and Fuzzy Logic tools foresees for deeper 
investigation[18], [19], [20], [21]. 
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