
 

 

Experience with a Constraint and Preference Language for DSN 
Communications Scheduling 

 
Bradley J. Clement, Mark D. Johnston, Steven R. Schaffer, Daniel Q. Tran 

Artificial Intelligence Group, Jet Propulsion Laboratory 
firstname.lastname@jpl.nasa.gov 

 
 

Abstract 
 

As part of a new scheduling system for allocating 
NASA Deep Space Network (DSN) ground antenna 
and equipment resources to space missions, we have 
designed and implemented a requirements language 
oriented towards the clear and efficient specification of 
mission communication constraints and preferences. 
In this paper we discuss the requirement language 
itself, the model into which the language is translated 
for automated scheduling, and the impact it has had on 
scheduling algorithm design. The scheduling engine 
supporting the language is being integrated into a 
mixed-initiative scheduling system for a 2008 delivery. 
 
1. Introduction 
 

NASA’s Deep Space Network (DSN) maintains and 
schedules 16 large antennas (26m, 34m, and 70m) to 
support interplanetary missions, radio and radar 
astronomy, and also some Earth orbiting missions. 
Services include command uplink, data downlink, 
ranging, and navigation among others. There are 
around 150 missions listed as DSN users, with 20 to 25 
spacecraft serviced per month. 

In an effort to ease the burden of human scheduling, 
negotiation, and conflict resolution in allocating 
resources of the DSN, we have developed a scheduling 
engine that implements a new requirements language. 
The language is XML based and designed for clear and 
efficient specification of mission communication 
requirements. The Aspen planning system [4] uses 
these requirements to create schedules and resolve 
conflicts using local and systematic search techniques. 

The language and the scheduling engine are part of 
a mixed-initiative scheduling system, currently under 
development as the new scheduling system for the 
DSN. The initial delivery to users for evaluation is 
scheduled for early 2008, with an initial operational 
capability planned for late 2008. Users have estimated 
that this more powerful and flexible scheduling system 
can save several millions of dollars per year in mission 
operations costs. 

The language captures all the key metric resource, 
durative action, and temporal constraints of a mission’s 
communication requirements. DSN service activities 
can be requested individually or in bulk. Shared 
services are also represented, for example 
simultaneous communications with multiple spacecraft 
at Mars. The language expresses constraints and 
preferences on both local contact timing and non-local 
factors such as total contact time, gap time, and gap-to-
track ratio over some time period. The users and the 
scheduling engine adjust the schedule within the 
flexibility of the constraints and to accommodate 
indicated preferences as much as possible. 

This paper discusses our experience in developing 
the requirement language, the modeling the language 
in Aspn, and modifying search and repair strategies in 
Aspen based on language features. This paper does not 
describe scheduling constraints outside the language, 
details of the system architecture, details of the 
algorithms, or related scheduling algorithm work that 
are specified elsewhere [5],[6]. We discuss other work 
related to the requirement language of this paper in 
Section 6. 
 
2. Background on Aspen Models 
 

Here we briefly describe a subset of the modeling 
language features of Aspen [4] that are used to 
implement the requirement language. In Aspen, a task 
is defined to have decompositions, parameters, 
dependencies, and reservations.1    A decomposition of 
a task is a choice of sets of child tasks to be 
instantiated with the task as their parent. A parameter 
of a task is a variable that is assigned from the outside 
as input or computed as a function of other parameters. 
Dependencies of the task specify the connection of 
parameters through functions and through assignment 
between a parent tasks and their children.  When a 
value of a parameter changes, it propagates through 
                                                           
1 We use the term “task” to refer to an Aspen activity 
because we wish to use the DSN meaning of “activity” 
as a service provided for a mission. DSN activities and 
requirements are modeled as Aspen activity schemas. 



 

 

dependencies to dependency functions for which the 
parameter is an argument and to the parameters of 
child tasks to which it is assigned. A reservation of a 
task is a constraint or effect on a state or resource 
timeline. A timeline is represented as a function of 
time to value. For example, a decoder resource 
timeline keeps track of how many decoders are 
available for use. A viewperiod state timeline keeps 
track of when a spacecraft will be in view of an 
antenna. 

 
3. Modeling the Basic Requirement Types 
 

The most basic goal of the requirement language is 
to help a mission convey its service needs, flexibility, 
and preferences in terms of timing and resource use to 
other missions and users and to the scheduling engine 
for aid exploring scheduling options to avoid or 
resolve conflicts or to improve the schedule. The 
language also aims to make it easier for a user to 
specify many similar activities concisely as a group. A 
third purpose of the language is for missions to be able 
to manage their activities more easily by editing 
requirements instead of repeating edits for individual 
activities. 

The different types of requirements (named in the 
sub-section headings 3.1 - 3.5) share many basic 
parameters and some layer on others. The structures of 
these types are general and may apply to other problem 
domains. The single-activity, continuous, and periodic 
types originated from a past attempt to get users to 
manage their activities through requirements. 

 
3.1. Single-activity 
 

A single-activity requirement specifies service for a 
single pass, i.e. the time period the spacecraft is in 
view of a complex of colocated antennas. It is a basic 
building block of other requirement types, and its 
parameters are used by all of the others. It is meant to 
capture flexibility in start time, duration, and usable 
antennas. As shown in Figure 1, the min/max 
individualTrackDuration and absoluteTime 
parameters specify timing flexibility. Antenna 
flexibility is specified in assetSpec as choices (using 
an OR operator) of antenna IDs or by group name, and 
multiple antennas can be requested by grouping them 
with an AND operator. The model in Aspen currently 
only supports a single AND at the top level with no 
restriction on OR nesting.  

The model of a single-activity requirement enforces 
its timing constraints using parameter dependency 
functions (shown in Figure 1 as precedence constraints 

on a child task) to constrain the start time and 
durations to fall within the absoluteTime bounds. In 
addition, service setup and teardown time durations 
are looked up using a dependency function of the 
services being performed. A track is the service time 
between the setup and teardown periods of an activity. 
The duration of the track is bounded by a dependency 
function to the individualTrackDuration range. 

The single-activity requirement is modeled as a task 
that encloses the activity task, passing down many 
parameters as shown in Figure 1. The assetSpec is 
modeled as a string parameter, capturing the AND/OR 
nesting of individual antennaIDs. The assetSpec is 
parsed, and each OR antennaID choice is assigned a 
task decomposition choice, each specific to a 
missionID-antennaID pair. An AND grouping is 
modeled as a separate decomposition choice (not 
shown in the figure) for a continuous requirement (see 
Section 3.2) where the overlap is for the entire track. 

Many parameters pass down to the “antenna 
choice” task for making reservations on timelines such 
as the viewperiod timeline (e.g. the missionA-
antenna3-viewperiod state timeline must be “in view”). 
The equipment string parameter is used to encode 
sharable equipment resources needed for the service 
activity (such as specific types of receivers). 
 
3.2. Continuous 
 

A continuous requirement represents uninterrupted 
service for longer than a single pass, so the service is 
passed off to another antenna, creating another single-
activity instance. This is typical for providing a 
spacecraft navigation during launch, trajectory control, 
and planetary entry, descent, and landing. As shown in 
Figure 2, the track portion of the activities have a 
specified overlap, and the continued duration of the 
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combined service (without double-counting the 
overlap time) must add up to totalTrackDuration. 

This requirement is modeled in Aspen as a task that 
recursively decomposes into successive single-
activities until the total duration is achieved. Like the 
single-activity requirement, the start time of the first 
activity is restricted with dependency functions so that 
the overall continuous sequence is contained inside the 
absoluteTime window. The last activity may 
accumulate a total duration beyond the 
totalTrackDuration and extend beyond the end of the 
absoluteTime window with the minimum 
individualTrackDuration. In rolling out the 
activities, the start time of the next activity is 
calculated as a dependency function in the prior 
continuous parent from the start time and duration 
passed up from the previous activity. The next start 
time is then passed to the next continuous parent. 
Similarly, the remaining total duration is passed 
through the continuous parent tasks subtracting the 
track duration of activities along the way. To 
determine if the totalTrackDuration is achieved, the 
actual total duration is calculated in the last parent and 
passed up/back to the top, where the constraint is 
checked. 
 
3.3. Segmented 
 

A segmented requirement is useful for specifying 
the fraction of time a spacecraft needs service and the 
constraints on gaps between services. The main 
motivation for this requirement is that spacecraft often 
accumulate data at a particular rate and need to 
downlink it often so that the onboard storage does not 
fill up and start losing data. At the same time, too 
much downlink time can clear out the data, and there 
will be none to send, resulting in wasted antenna time. 

As Figure 3 depicts, the segmented requirement 
states that a collection of activities is needed within an 
absoluteTime window where the total track time of 
the service is within a specified totalTrackDuration 
range, the gaps between services are all within a 
specified trackGap range, and/or the ratio of time gap 
gaps between tracks and the track time is within some 
gapToTrackRatio range. Since absoluteTime is a 
fixed timeframe, the total duration range and gap-to-
service ratio can be computed from each other:  

 
total gap time = 
totalTrackDuration * gapToTrackRatio = 
|absoluteTime| - totalTrackDuration. 
 
The segmented requirement is modeled as a task 

that decomposes recursively into “segmented parent” 
tasks, each decomposing into either two temporally 
ordered new segmented parent tasks or a single activity 
as a leaf. We chose this binary tree structure so that the 
scheduling engine could add or delete tasks in the 
middle of a sequence without disturbing other 
activities. When Aspen changes a task’s 
decomposition, it first abstracts the task by removing 
all child tasks underneath and then re-detailing (re-
decomposing) and scheduling new tasks for the new 
decomposition choice. 

For example, in order to divide the third activity of 
a continuous requirement into two, the engine would  
abstract the continuous parent, removing the third and 
all following activities of the requirement. Then the 
engine would recreate and reschedule all of those 
activities. The rescheduling is necessary for the 
continuous requirement anyway since the fixed overlap 
constrains the start time to one value for all but the first 
activity, so changing one end time will change the start 
of all following activities. However, the gap range for 
the segmented gives its activities slack so that it is 
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Figure 2. Model of a continuous requirement with its unique parameters. 



 

 

easier to keep the changes local. So, when a lowest-
level segmented parent task is re-detailed, its child 
activity may often be the only one affected.  

Decomposition of the segmented parent task is 
performed similarly to an in-order tree traversal so that 
activities are instantiated and scheduled in time order. 
We chose to restrict the first activity to start within the 
maximum trackGap. The range of the next activity’s 
start time is passed down from the activity’s segmented 
parent ancestors. The previous activity’s start time and 
duration propagate up the tree to the parent it has in 
common with the next activity, and that parent 
calculates the start time range for the next activity. The 
remaining total track duration range is also calculated 
for all segmented parents like for continuous 
requirements. The scheduling engine uses this range to 
spread tracks evenly and to decide whether to split 
segmented parents during decomposition. The numbers 
of activities before, after, and below are also 
propagated and computed to help make the same 
scheduling decisions. The use of this information in 
decomposition heuristics is described in Section 5.3. 

 
3.4. Periodic 
 

A periodic requirement is meant to make it easy to 
request many of the same kinds of activities at once, 
especially capturing the need for activities that are 
regularly spaced apart, such as “a track every day” or 
“3 tracks each week.”  Specifically, a periodic 
requirement asks for a tracksPerPeriod number of 
instances within a time interval of size trackWindow 
every specified period of time starting at the minimum 
absoluteTime, as depicted in Figure 4. 

Like the continuous type, a periodic is modeled to 
recursively decompose and roll out parent tasks. 
However, each of these also have a “window parent” 
child task that recursively decomposes, generating  
tracksPerPeriod activities which are constrained to 
fit within a duration of trackWindow into the period in 
the same way an activity is confined to the 
absoluteTime of a single-activity. Notice that the 
activity tasks have no ordering constraints within the 
same trackWindow. 

Although not shown in Figure 4, the period, 
trackWindow, and tracksPerPeriod parameters pass 
down through the decomposition. The engine currently 
assumes that the periodic requirement is for single-
activities but there are plans to be able to also 
decompose into segmented and continuous tasks. 
 
 

3.5. Event Interval 
 

An event is a named time point, interval, or set of 
intervals (e.g. apogee, eclipse, day shift). Every 
mission plans operations based on their own set of 
events, so the scheduling system is designed for users 
to schedule with respect to their own event definitions.  
Static events are those that the scheduling engine 
cannot change.  This is the normal sense of events—
the engine does not decide when eclipses or vacations 
occur.  Dynamic events are those that are events that 
are not static.  The requirement language allows 
dynamic events that reference the time intervals of all 
of a requirement’s activities or of the nth activity from 
the start or end. 

There are two original motivations for dynamic 
events for satisfying temporal constraints between 
requirements.  (1) Different spacecraft sometimes need 
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Figure 3. Model of a segmented requirement with its unique parameters. 



 

 

to have contacts that are simultaneous (the case of 
Cluster 1 and 2) or back-to-back (STEREO A and B).  
(2) Missions may have different requirements for 
different services, but the same activities must fulfill 
both.  For example, Mars missions must keep track of 
when they receive uplink services during a pass 
because two spacecraft/rovers can share an antenna as 
long as only one is uplinking.  Thus, since downlinks 
always accompany uplinks, the engine schedules each 
uplink within a downlink. 

An event interval requirement is similar to a 
periodic requirement, except that the time windows 
into which instances of activities are placed are a 
specified set of intervals instead periodic windows of 
the same size. For example, a mission may request two 
activities between every occlusion. 

The model for the event interval requirement uses 
the periodic model but adds a string parameter of the 
set of intervals and dependency functions to set the 
timing of window parents to intervals of the set. 

So, like the periodic, the event requirement is also 
useful for requesting many activities at once, and it has 
an additional convenience in that if there are many 
requirements specified relative to an event (e.g. 
launch), if the event time changes, the requirements do 
not. The user interface of the scheduling system allows 
any date/time of a requirement to be an event. 

 
4. Other Requirement Attributes 
 

The last section explained the structure of the basic 
scheduling requirement types. We now describe some 
other requirement attributes independent of these 
types. 
4.1. Event constraints 

 
Additional temporal constraints may be specified on 

activities in reference to external events (as defined in 
Section 0). The requirement language expresses both 

“within” and "avoid" logic for specified event sets. For 
example, a mission's tracking activities could be 
constrained to avoid planetary occultations, to fall 
within daylight hours, and to avoid operator vacation 
time.  While a event interval requirement specifies how 
activities are created, the event constraint specifies 
where (in time) they are scheduled. 

The original choice for modeling these constraints 
was to create a timeline for each, but this required an 
unknown amount of effort to ensure that Aspen would 
support dynamically defining timelines and tasks.  This 
would be necessary when the scheduling engine 
accepted requests to add and remove different kinds 
data in the middle of a session. 

Instead, we encode the events and their constraints 
into a string parameter, and a dependency function of 
the start and end times evaluates the string to see if the 
constraint is met.  If the constraint is violated, the 
activity creates a conflict through a reservation on a 
timeline devoted to event checking. 

The string encodes the constraint as list of 
allowable interval relations, Allen relations [1], and an 
indicator of whether the constraint must be satisfied for 
all or at least one of the event’s intervals.  For 
example, the string could encode that the activity’s 
time interval must be during or containing (but not 
having the same start or end as) one of a following list 
of intervals.  The XML interface currently only 
exposes the “within” and “avoid” constraints, but we 
expect users will later exploit the much greater 
expressiveness of this underlying representation. 

 
4.2. Override 
 

Missions will occasionally interrupt a sequence of 
services with another activity. For example, regular, 
periodic tracking passes every other day may be 
suspended on one day for a trajectory control 
maneuver (TCM). Breaking the periodic requirement 
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into two pieces does not work since the day of the 
TCM may change. Instead, we directly represent this 
kind of relationship.  Any requirement can be specified 
to override any other. This means that anytime a track 
A of a requirement overlaps a track B of another 
requirement it overrides, track B is removed, but B still 
satisfies its requirement. 

This is modeled by decomposing the overridden 
track to a noop (phantom activity), so that no 
reservations are made on the timelines. The engine also 
does not report the activity in schedules and conflicts it 
returns. A dependency function of the activity’s start 
time and duration determines when it is overridden by 
seeing if there are any overlapping activities of 
overriding requirements. This function is also triggered 
whenever the start time or duration of an activity of an 
overriding requirement changes through one of its 
dependency functions. These dependency functions are 
written in C++ and contain static data structures 
keeping track of which requirements override which, 
so that checking overrides is simple.  
 
5. Impact on algorithm design 
 

The scheduling engine will generate an initial set of 
activities by decomposing requirements based on the 
corresponding models described in Section 2. As the 
engine creates each activity, it schedules it by choosing 
a start time, duration, and allocation of antennas. We 
will refer to a choice of these three values as a state of 
the activity. A state space is the allowable 
combination, of choices for one or more activities. The 
scheduling engine’s state spaces only includes states 
that meet the constraints of the requirements 
(excluding dynamic events constraints as we explain 
later) and the spacecraft’s viewperiods. 

 
5.1. State scoring 
 

The states are scored by common and type-specific 
criteria. The common criteria are 
♦ whether all of the other constraint rules (those of 

the DSN, not defined by the requirement) are met, 
♦ how well they can satisfy dynamic event 

constraints (which  we will explain later), and 
♦ the closeness of values of the state to their 

corresponding preferred values. 
For the initial layout, the activity is assigned the 

highest scoring state. If there are no legal states, the 
activity is rescheduled to a state close to its current 
state and maybe satisfying some of the requirement’s 
constraints. This is how the single-activity requirement 

is scheduled. There are other criteria used for 
continuous and segmented types discussed later. 

When resolving conflicts, the engine iteratively 
chooses a conflict, chooses an activity (or a group of 
activities) involved in the conflict, and reschedules 
them in one of three ways, depending on the kind of 
conflict and type of requirement(s) involved: 
1. stochastically assigns a state from the legal space 

of choices for the activity, each weighted by score, 
2. abstracts (removes) the activities (for a single 

continuous or segmented requirement) and 
regenerates them through decomposition, applying 
method 1 to reschedule each, or 

3. systematically searches through the combined 
state space of the chosen activities to find and 
assign a state for each that together resolves the 
conflict if such a combination exists. 

 

The continuous requirement has additional criteria:  
♦ the number of subsequent activities that are moved 

by assigning the state and  
♦ whether the subsequent activities would have legal 

state choices. 
The segmented requirement uses the same score 

criteria as the continuous plus others 
♦ for spreading activities evenly across the 

absoluteTime range and 
♦ for improving the total duration when not within 

totalTrackDuration bounds. 
If the total accumulated duration falls short of the 

evenly-spread ideal by more than its longest legal 
duration, earlier start times and longer durations are 
preferred. If the total is larger than the ideal by the min 
duration, then later start times and shorter durations are 
preferred. Otherwise the total duration is acceptable, 
and the score is then based on how close the start time 
is to an evenly-spread ideal computed as follows: 

ideal start time =  
absoluteStartTime.min + 
(|absoluteStartTime| * 

 accumulated total track duration)  / 
totalTrackDuration.middle – 

state.duration – trackGap.middle 
 

In situations when the segmented actual total track 
duration is outside the totalTrackDuration bounds, 
each state is also scored by how much its duration 
increases or decreases in the direction to get the total 
within the totalTrackDuration bounds, getting a zero 
score if not improving. 

 
5.2. Dynamic event constraints 
 

The scheduling engine does not restrict the state 
space based on dynamic event constraints as it does 



 

 

with static because doing so could prevent the possible 
resolution of an event conflict.  Suppose that a state of 
an activity that satisfies its requirement A can violate a 
dynamic constraint that another requirement B has 
with A. We cannot simply remove the states that cause 
this violation from the state space because it can keep 
the engine from exploring some legal combinations of 
states, those that require rescheduling activities of both 
A and B. For example, as shown in Figure 5, if B’s 
activity must be within A’s, but A’s is not in a legal 
viewperiod of B, B will not have any legal states. A’s 
activity could also have no states if it were required to 
cover B, preventing them both from being able to 
move to some other time/antenna where they could 
satisfy all constraints, shown at the bottom of Figure 5. 

Since the state space of activities cannot be reduced 
for dynamic event constraints, scoring is used to favor 
states that satisfy these constraints, as mentioned in the 
second bullet of Section 5.1. Note that when scoring 
whether an activity state meets constraint rules, only 
the constraints defined for the activity’s requirement 
are checked—not those that other requirements have 
on it. So, this scoring is based on event constraints 
defined in other requirements. The only design choice 
here is how to find for an activity the others that have 
an event constraint on it. The engine does this by 
looking at nearby constraints and effects on common 
timelines to find the constraining activities and chooses 
states that help satisfy those events constraints. 

 
5.3. Segmented task decomposition heuristics  
 

In Section 3.3, we discussed the model of the 
segmented requirement, how the engine decomposes 
the task, and how the task decomposition propagates 
information in parameters to inform decomposition 
heuristics. Here we describe how the decomposition 
heuristic uses this and other related information. 

The decomposition of the segmented requirement 
task is delicate because the number tasks and their 
durations are not fixed, allowing for a great number of 
possible activity sequences, but viewperiod, event, and 
resource constraints can complicate the choices. In our 
experience, the performance of the engine was most 
influenced by the choice of these heuristics. For one 

test, performance ranged from generating a schedule 
with ~100 conflicts and growing the conflicts during 
rescheduling to a schedule with 6 conflicts on average 
and resolving). The effort put into the heuristics was a 
significant portion (~10%) of the overall development. 

When a requirement is only partially decomposed, 
it is difficult to determine whether to split a segmented 
parent to add another activity in decomposing the 
entire task tree or only a part.  In this case, the engine 
benefits from knowing  
♦ the number of activities there are before, after, and 

underneath this parent task in question, 
♦ the prior, remaining, and local total track duration, 
♦ how many segmented parent tasks are there after 

this one that are not yet decomposed, 
♦ when the next existing activity starts, 
♦ whether it is the next activity after this task, 
♦ the min/max number of activities in the tree, 
♦ the number and duration of activities outside this 

requirement constrain this one, and 
♦ the number and duration constrained by this one. 

In some cases the decision to split is obvious; e.g. 
there will not be enough maximum remaining total 
duration to create a minimum duration activity. 
Otherwise, the engine compiles the information above 
into a few metrics (each ranging in value from 0.0 to 
1.0) for computing the probability to split. We do not 
give detailed definitions or formulas for these but list 
them to give an intuition of our experience in 
balancing them to keep the decomposition from 
making obvious errors without restricting the 
combined state space. 
♦ howFarIn = fraction of time into the requirement, 
♦ deepEnough = task is deep enough into the tree, 
♦ enoughTrackRate = enough prior total track 

duration per time, 
♦ enoughDuration = enough overall track duration, 
♦ enoughSpread = enough activities for an even 

spread of duration over time, and 
♦ enoughActivities = enough activities overall. 

The overall formula for the probability of not 
splitting (i.e. no need for another activity here) is 
 

((1.0 – howFarIn) * deepEnough + 
 0.5 * enoughTrackRate + 
 howFarIn * (enoughDuration + enoughSpread 
             + enoughActivities)) / 
(2 * howFarIn + 1.5) 

 
The engine uses the howFarIn metric to emphasize 

the importance of others with respect to the beginning 
or end of the activity sequence. For example, 
expanding deep enough is important to balance the tree 
for more flexibility in local problem solving, but the 
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deepEnough metric is not important (and potentially 
damaging) for choosing whether to add activities to the 
end. Likewise, there will never be enough activities or 
total duration at the beginning of the decomposition, so 
placing importance on the last three metrics up front 
would result in a very unbalanced tree. The dividend 
of the formula normalizes the value to a probability 
ranging between 0.0 and 1.0. 
 
6. Related Work 
 

A design of the overall scheduling system [6] gives 
more context for the role of the DSN scheduling 
engine and the challenges faced in other parts of the 
project. An earlier report of this work [5] discusses 
other details of the overall scheduling problem, 
resource modeling, search strategies, and how other 
scheduling problems and approaches relate to that of 
DSN scheduling. The report also includes some history 
of prior attempts to automate DSN resource allocation. 

Some other network scheduling systems use similar 
higher-level goal specifications. Mexar2 [3] addresses 
the problem of scheduling downlinks for the Mars 
Express Orbiter in order prevent the overwriting of 
data stores onboard. The segmented requirement is 
also meant to capture this problem but does not treat it 
as directly as Mexar2 as it is meant to provide a simple 
abstraction to avoid the complexity of representing 
operations at this more detailed level for each mission.  

The European Space Agency tracking network 
Management and Scheduling System (EMS) [9] 
represents and schedules periodic requests with 
min/max gap and other similar constraints. EMS also 
uses iterative repair as the engine discussed in this 
paper does along with systematic local search. 
Continuous tracking and other single-activity services 
are allocated by the NASA Space Network Demand 
Access System using a first-come, first-serve policy 
with no rescheduling [8]. Scheduling for the Air Force 
Satellite Control Network [2] is treated as 
oversubscribed variant of job-shop scheduling with 
additional constraints, similar to single-activity 
scheduling for the DSN. 

 
7. Conclusion 

 
In designing a scheduling engine for a requirement 

language that more directly and concisely captures 

higher-level understanding of scheduling goals, we 
found complexity in modeling and search heuristics 
inside an iterative repair framework. Our solutions to 
these problems point out that hierarchical task models 
of basic goal structures are non-trivial, and local search 
heuristics can be intricate and fragile. In future work, 
we expect to expand the scope and role of systematic 
search in the scheduling engine to help offset the 
burden of developing and maintaining heuristics.  
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