
Testing spacecraft autonomy with AGATA

Marie-Claire Charmeau1, Jérémie Pouly1, Eric Bensana², Michel Lemaître²
1CNES, Toulouse, France, ²ONERA, Toulouse, France

Marie-Claire.Charmeau@cnes.fr

Abstract

AGATA is a research and demonstration program

led by ONERA and CNES on the topic of autonomy for
space systems. Current work consists in the
development of a testbed, including a spacecraft
simulation and ground segment tools for operations.
The on-board software of the spacecraft is based on a
new architecture dedicated to autonomous systems and
a new process of software development and validation
is being tested with the objective of mastering more
easily the complexity added by autonomous functions
in a spacecraft architecture. The first step of this
process is the description of a decisional architecture
which has to be translated into a real-time software
architecture before being implemented and tested on
the testbed. The process is largely model-based and
partly automated by a Java code generator. In this
paper, we describe the simulation framework and the
process used for the on-board software development
and validation.

1. Introduction

There is a gap between in-flight experiment of
spacecraft autonomy and its operational use on a space
project. Even flight-proven algorithms may not easily
convince project managers that they can be used safely
and without additional cost. This is why CNES and
ONERA started a few years ago a research program
dedicated to spacecraft autonomy the purpose of which
was to make on-board autonomy a ready-to-fly
technology. Parts of the activity consist in defining
algorithms for on-board planning or advanced FDIR
and implement them in a specific architecture. This
architecture is based on decisional components with
both reactive and deliberative behavior. How to
translate this decisional architecture into a flight-
software architecture, while respecting industrial
constraints and safety and validation requirements is

the challenge that we address through the AGATA
demonstration program.

2. The AGATA program

2.1. Partners and context

In July 2004, CNES and ONERA signed an
agreement to start a common research program on
autonomy for space systems. Since then, a team of
ONERA researchers and CNES engineers have been
working together with the same objective: federate
research activities on autonomy through a
demonstration project. This program is composed of
research studies on topics such as architecture,
autonomous planning and diagnostic, software
development and validation methods. The results of
these studies are applied to the AGATA (Autonomy
Generic Architecture - Tests and Application) lab
bench which is being built for this purpose.

The LAAS-CNRS plays a part in the research
activity by providing its experience in decisional
architecture for robotics and diagnosis algorithms.
Industrial partners are also involved in this program.
Their point of view is particularly useful and helps to
produce a final software architecture compliant with
industrial requirements.

2.2 Objectives

The main objectives of this program are to:
- study feasibility of high autonomy levels for space

systems (except launchers)
- demonstrate the interest of autonomy and its

impact on ground operations and operator skills
- define and test a process for the development and

the validation of software dedicated to autonomy
- develop a rapid prototyping tool to evaluate

autonomy concepts for future projects.
The demonstration testbed provides the framework

to reach these objectives.

2.3 The ground demonstration testbed

The aim of the demonstration is to study the whole
system consisting of:

- a space segment with one or several spaceships or
one spaceship and several ground devices. In case of
rovers, the aim is not to study their own autonomy, but
just to model them as part of a larger system;

- a ground segment which can be split into ground
stations, a control center and mission centers.

The satellite's behavior and its environment are
simulated. The focus is put on the on board software,
which can be either simulated as a functional software
or integrated in the simulator as a real-time flight
software. Hardware definition level in the simulation is
precise enough to test FDIR algorithms and
redundancy will be taken into account too in order to
test reconfiguration scenarios.

For the ground segment, which has not been
developed yet, we intend to use as much as possible
recent generic tools developed by CNES for its control
centers. In order to get a feedback on the impact of
autonomy on ground operations, real operators will be
asked to control a simulated autonomous spacecraft.

Several mission scenarios have been selected as
candidates for a demonstration of the advantages of
autonomy [1]. The first mission, currently the baseline
for the studies, is an Earth monitoring mission.

3. HOTSPOT, a virtual mission

3.1. Fire and volcanoes monitoring

This mission is inspired by the ESA Earth Watch
program FUEGOSAT. It is an imaginary mission
which has been defined to combine the need of a quick
response to an event with the need of autonomous
planning of on-board activities. The mission objectives
are to detect, observe and monitor events such as fires
or volcanic eruptions. Once detected, events must be
localized and if possible identified very quickly by the
satellite before sending alarms to the ground and
planning an observation phase of the phenomena. Of
course data must be downlinked as soon as possible to
provide support to the ground intervention teams. On-
board reactive planning can help to associate a long-
term background mission which consists in monitoring
predefined areas and a detection and alarm mission
with short-term requirements. The planning system has
to manage energy and memory resources. The mission
is performed by means of a constellation of low Earth
orbit satellites, but only one satellite is taken into
account at present time in the demonstrator.

Priority levels are associated to the monitoring
requests. Those subsequent to a new detection have the
highest level, and those related to the background
mission have the lowest level.

3.2. The mission architecture

Two mission centers can send commands to the
satellite. The main mission center is dedicated to fire
monitoring, and the second one monitors the
volcanoes. Both can receive the data emitted by the
satellite as they share several ground stations. They can
also receive the alarms triggered after the detection of
a new hotspot and relayed by a geosynchronous
communication spacecraft.

In the current scenario, they do not have a direct
access to the satellite for the commanding link. They
have to send their command plans through the control
center. An alternate scenario would enable this direct
access.

The commands send by the mission centers to the
satellite are high-level requests. They are related to the
background mission only, as the observation requests
linked to the hotspots detected on-board are generated
by the on-board software. A request contains the
coordinates of the area to be monitored, and the
frequency of the monitoring task (once a day or once a
week for example).

The main mission center also has the possibility to
tune the autonomy algorithms with specific commands,
and to adjust the visibility level on the satellite's
behavior by modifying the telemetry plan.

3.3. A generic platform

The satellite platform is a typical platform for LEO
missions, without attitude maneuvering ability. A set
of sensors, actuators, and communication and power
subsystem hardware has been defined for the main
platform functions interacting with the mission
activities (AOCS, communication with the control
centers, power management). Interface with the on-
board software has been defined at a functional level.
In this simulation tool, low-level communication
protocols are not simulated, as opposed to simulation
tools that are used for operational tests of real
missions.

The occurrence of anomalies or failures can be
triggered via the simulation control interface.
Communication with ground segment tools is done by
the exchange of telemetry and telecommand files, and
potentially other files that could be useful for the

observation of autonomy functions, such as event files,
reports and so on.
4. Validation issues

4.1. Autonomy-related difficulties

One of the challenges addressed in the AGATA
program is to define a development and validation
process adapted to highly autonomous systems and
compliant with space industry standards. Usual
validation methods are inappropriate for such systems
because of the onboard decision capability associated
with autonomy. Since the system reacts to events in a
complex way depending on an unknown context,
exhaustive testing is impossible.

Mastering this complexity can only be achieved by
applying a step-by-step development and validation
process, from high-level autonomy algorithms testing
to fully-integrated software validation. Key steps
include the following:

 - Define a generic architecture adapted to advanced
autonomy needs and ensuring a low coupling between
application processes so that testing may be done
separately for each of them.

 - Specify and test autonomy functions at decisional
level in order to validate the algorithms before
embedding them in the software.

 - Prototype the flight software to check, without
detailing all parts of the software, that high-level
mechanisms trigger expected behaviors.

 - Run functional validation tests on the functional
simulator containing representative models of platform
and payload hardware devices, and including
communication with a control centre prototype.

 - Run real-time validation tests on the real-time
simulator running the on-board software on a
calculator emulator and using the same models as the
functional simulator.

This process contains two software validation steps:
Functional validation is separated from strictly real-
time validation. Functional simulations are used to
validate the decisional behavior of the spacecraft and
its interaction with the ground control, whereas real-
time simulations are centered on software behavior
with respect to hard real-time constraints.

4.2. An adapted validation process

As detailed in the software development section, the

leading idea in the AGATA program is to apply an
iterative and incremental development process. This
guideline will allow to perform part of the validation
process directly at model level and use auto-code

generation to transfer the validated properties to the
software code. Properties that cannot be verified at
model level will be validated progressively on the
auto-code through successive increments and
iterations. This approach allows to focus on specific
subsets of the onboard software code that need to be
validated over different iterations.

As demonstrated, validation is largely based on the
model-based approach and on the incremental and
iterative development process. The two guidelines are
to validate as much as possible of the software as early
in the development process as possible (directly at
model level when applicable), and to use auto-code
generation in order to reduce the validation effort
related to implementation.

This validation process is being tested on the virtual
HOTSPOT mission. A generic decisional architecture
adapted to autonomy needs was designed and used to
validate high-level algorithms. Then, after a decisional
software was prototyped with the Esterel language, the
functional software, auto-coded in Java language from
an UML specification, was tested in a first version of
the simulator. This functional simulator will soon be
upgraded to enable real-time simulation in order to
perform the last validation step to confirm onboard
autonomy as a ready-to-fly technology.

5. Decisional architecture

5.1. A generic architecture

AGATA generic architecture aims at specifying the
decisional mechanisms of the on-board software. As
the definition of a whole autonomous system may be
very complex, we chose to describe it as a modular
structure. Modules are built on the basis of a common
pattern and connected together to form a global
architecture. The objective is to describe the expected
behavior of the system in such a way that it is easy to
understand and to validate.

Each module is in charge of controlling a part of the
system and of handling the data associated to this part.
It takes into account requests and information coming
from other modules and can send requests or ask
information to other modules. To avoid potential
decision conflicts it cannot have direct access to the
part of the system controlled by another module.

Each module is built on a sense/decide/act pattern.
The module maintains its own knowledge of the state
of the system part it controls, on the basis of an
internal model and data acquired from other modules
or from hardware elements (such as sensor
measurements).

The module uses this knowledge and the requests it
has received to decide on which action to perform
(actions include sending a request or a command,
changing its behavior, reporting an event, or even
doing nothing).

Even if the modules are all built following the same
pattern, we can distinguish different types of modules.
Low-level modules which control hardware parts are
called monitors. The decisions they can make are
limited to local control loops and FDIR functions.
They process the data that are used by higher-level
modules. The highest-level modules control the global
behavior of the satellite. One possible decisional
architecture based on these modules is a hierarchical
architecture with a "mission" module at the top level
[2].

5.2. Reactive and deliberative tasks

Each module can make a decision and produce new
requests addressed to itself or other modules. The
decision-making process combines two tasks: a
reactive control task and a deliberative reasoning task
[3]. The reactive control task analyses the current state
of the module and new requests or new events that
have been received. It can either react immediately,
using pre-defined decision rules or algorithms with
short computation time, or decide to trigger a
deliberative task. That task runs an algorithm which
needs some time to produce an optimized result, such
as planning or diagnosis algorithms. It can provide
intermediate results and is interrupted by the reactive
control task when the final result is due. The longer the
computation time allowed, the better the final answer.

The solution delivered by the deliberative task is
only an advice, and the reactive control task decides
whether to follow it or not. The control task should
always be able to make a decision, even without any
answer from the deliberative task. This decision may
not be an optimized one, but the decision process must
not be blocked by the deliberative task.

6. Software development

6.1. Software architecture

Once the decisional architecture has been defined,

the next step is to translate it to a software architecture
taking into account the constraints associated to
embedded critical real-time software.

The fulfillment of some of the constraints might
require to alter the decisional architecture, but the idea
here is to comply with the constraints, remaining as

close as possible to the theoretical architecture
designed previously. For example, good practice
development rules in real-time software state that the
higher the number of interacting tasks, the harder to
prove any determinism of the final software.
Therefore, the flight software cannot implement the
decisional architecture as given, with potentially 3 to 8
tasks per module and more than 20 modules. Thus the
software tasks might be defined in order to fit the
decisional architecture with a lower granularity (all
tasks defined in the decisional architecture were used
as undividable entities, and sets of those tasks were
combined as software tasks), and to minimize
interactions between each tasks (both in terms of direct
communication and access to shared data).

6.2. A two-step development process

For AGATA, a two-step development process is

followed:
- an early development cycle based on a

synchronous language – Esterel – that focuses on the
integration of autonomy-related algorithms (such as
on-board planning), and aims at prototyping and
validating the decisional part of the software, and
setting up the communication interface with the
simulator;

- a model-based approach that consists in writing a
complete formal specification of the software in UML
2.0 and uses an auto-code generator to produce the
Java code for this asynchronous software.

Both implementations are coded in Java language
using the Esterel to Java compiler for the “Esterel-
based” approach and a home-made UML to Java auto-
code generator for the “UML-based” approach.

This dual development process produces two
different implementations of the same functional flight
software, acknowledging the same interfaces, and
ready to run in the simulator. Although they are
independent, those two versions are also connected
since the synchronous “Esterel-based” implementation
is used as a testbench to validate new mechanisms and
algorithms before they are applied to the UML-based
implementation. Common interfaces are defined for
both versions so that, beyond compatibility with the
same simulator, they can also use common libraries
(mathematical calculations, astrodynamics classical
functions,…). Furthermore, identical data structures
(“classes” in the formalism of UML or Java) are used
in both implementations so that they only have to be
validated once.

Aside from its own purpose, described later on, the
Esterel-based implementation is largely used as an
intermediary step in the development of the UML-

based one. The leading idea here is to benefit in the
UML-based implementation from the preliminary
synchronous modeling permitted by synchronous
languages like Esterel. These advantages are mainly:

 - a sound mathematical semantics for concurrency,
enforced by the compiler;

 - the support of the two most common synchronous
execution patterns: event driven and clock-driven;

 - the simplicity of the language and its associated
formal model, making formal and practical reasoning
tractable, and giving to the Esterel code the flavor of
an executable specification. That framework allows to
validate before-hand part of the code used in the UML-
based implementation, such as data handling classes,
as well as prototyping new autonomy-related
algorithms.

6.3. Esterel-based approach

The Esterel-based implementation greatly simplifies

the solving of scheduling problems, as the compiler is
able to compute the ordering of the actions to be done
during a reaction step. This allows to focus on the
behavioral part of the software: given a set of inputs,
what should be the outputs in order to fulfill the
mission objectives.

This synchronous approach, compared to
asynchronous ones, makes it easier to implement and
validate the state machines and other behaviors defined
in the decisional architecture: They can quickly be
tested in the simulation environment, and potential
weaknesses in those mechanisms – and their associated
improvements – can be highlighted. Another benefit to
the use of Esterel, is to separate the behavioral part of
the software (coded in Esterel) from the algorithmic
part (coded directly in Java). The Java algorithmic part
of the software, shared with that of the UML-based
approach, is hereby validated for both implementations
in this decoupled framework – which decreases the
validation effort.

6.4. UML-based approach

The UML-based implementation primarily consists

in writing a detailed description of the software in
UML 2.0. The UML model contains both architectural
and detailed specifications (from high-level
requirements to the definition of the method bodies
described in UML pseudo-code). The two objectives
here are to contain the whole specification of the
software in a single model instead of several text
documents and to allow the use of automated

generators to produce either documentation or the
software auto-code.

This model-based approach allows an incremental
and iterative development process instead of the
classical V-shaped development cycle. The software
development is divided into several increments
(mapped onto software functional objectives), and
each of those is then subdivided into a few iterations
that contain different subsets of the specification for
the current increment. This approach grants a
progressive validation of the software, enabling an
early and less costly detection of potential mistakes in
the specification. However, such a development
process relies extensively on auto-code generation to
quickly prototype the software after each iteration,
which corresponds to evolution of the UML model.

6.5. The AutoJava generator

The auto-code generator used in AGATA is a RT-

Java generator prototype developed specifically for the
project. Although this paper only addresses the
functional flight software – i.e. software simplified
from most real-time concerns – the long-term objective
of the project is to produce a real-time software.
Therefore the UML model contains the description of
the functional software and the associated real-time
specification.

Until recently the UML standard did not contain
any framework to describe real-time properties of the
objects in the model, therefore, for AGATA, a profile
named “AutoJava” was developed for this purpose
(currently, real-time properties are only used as hints to
help specify the behavior of the functional flight
software). The AutoJava profile is associated with a
RT-Java auto-code generator (also referred to as
“AutoJava”) that can be applied to the UML model
completed with the profile for real-time aspects. The
RT-Java code generated is then automatically
converted to standard Java by a bash script (a few
manual modifications remain) and tested into the
simulator. This auto-code generation process in two
steps was chosen in order to remain compatible with
both real-time (in RT-Java) and functional (in standard
Java) implementations of the software.

The combining of the AutoJava generator (to
generate RT-Java code from the UML model) and the
bash script (to convert the RT-Java code into standard
Java) produces an automated tool to generate Java
code from a UML specification.

This development process is currently being applied
in AGATA. Since the theoretical generation tool
presented early on is still under development, the
generation of Java auto-code from the UML model still

requires manual interventions from the developer.
Nevertheless, the process is converging and should be
operational soon.

7. AGATA demonstrator architecture

7.1. The software/simulator interface

The AGATA demonstrator is composed of an
onboard software and a satellite simulator that includes
environment simulation (i.e. inputs to all sensors in the
satellite). As stated before, the simulator provides the
user with means to control the simulation through
environment events such as hardware anomalies or
failures and hotspot occurrences. Its interface is
defined for the purpose of software validation and it
offers all functionalities necessary to verify any
functional behavior that needs to be checked. The user
interface is a Tcl-Tk layer that sits on top of the C code
of the simulator, and it can be easily upgraded to fulfill
new simulation control requirements.

Simulator and onboard software communicate
through a functional interface that masks low-level
communication protocols. This interface defines a set
of functions that are available for each side to interact
with the other side: The simulator can activate the
onboard software at the required frequency, and the
software can read equipment inputs from the simulator
and send the subsequent outputs. However, whereas
the simulator is mainly coded in C language, the
onboard software is coded in Java language.
Communication between the simulator in C and the
onboard software in Java was enabled by the Java
Native Interface (JNI) and the Simplified Wrapper and
Interface Generator (SWIG). JNI was used to activate
the Java code of the onboard software from the
Simulator (including the loading of the Java Virtual
Machine), and SWIG was used to call C functions on
the simulator side from the software.

7.2. A simulator-driven demonstrator

The functional interface setup between the onboard

software and the simulator is largely based on the
simulator internal architecture. The simulator is based
on a Kernel that activates various simulation models
sequentially at their specific frequencies and manages
communication between them. Typical models include:

 - standard platform hardware: GPS receivers, Star
Trackers, Thrusters,…

 - specific mission hardware: a “Hotspotter” that
aims at detecting hotspots on the Earth surface, an
“Imager” that can take images of areas nearby

hotspots, a high-definition transmitter to download
pictures, a mass-memory dedicated to mission needs
and an alarm transmitter via geosynchronous relay to
warn the ground segment upon discovery of new
hotspots

 - environment: current orbit, position, speed and
orientation of the satellite, current date,…

The simulation Kernel activates the simulation
models in a static predefined order based on user’s
preferences and models frequencies. Most importantly,
the onboard software is also viewed as a “simulation
model” by the simulator, and is activated intermittently
as a whole, at the highest frequency of the software
functional tasks. Upon activation, it executes all the
actions it needs to run during this cycle whatever the
true duration of these actions. When all actions in the
cycle have been executed, the onboard software stops
and releases CPU resources in favor of the simulator
Kernel, allowing it to activate the next simulation
model.

7.3. Computing power

In the current simulator/software activation

principle, the demonstrator may only prove functional
properties of the onboard software. These are
substantial-enough objectives to start with, and are
currently being fulfilled by the AGATA team.

However, final project objectives lie far beyond
these and a real-time version of the simulator is being
developed at CNES. In fact one of the main foreseen
bottlenecks for implementing autonomy concepts is
related to the on-board computing system power. The
relation between on-board processing power and
achievable levels of autonomy will be addressed
during the project first by measuring memory or power
needs when running the functional version of the
software and then with a new simulator based on a
calculator emulator in “real-time” interaction with the
simulation models via a simplified I/O server. The
onboard software will be executed continuously on this
emulator and will be submitted to real-time constrains,
such as limited CPU resources.

Future developments should include a hybrid
version of the AGATA lab bench where real on-board
CPU will be used to run the proposed software.

8. Conclusion

A first version of the on-board software dedicated
mainly to hotspot detection and localization has been
integrated in the simulator. The whole process was
used for the first time to perform this development. It

highlighted some hurdles mostly related to the UML
tool and the integration of a functional Java code in the
simulator. This first increment in the cyclic
development helped to adjust some development rules
that will be used for the next increments.

The next version will include the data-handling
system and the telecommand and telemetry
management software which will enable connection
with the ground segment tools.

9. Acknowledgment

Part of the on-board software development work
was performed by Julien Conte (CSSI).

10. References

[1] M.C. Charmeau, E. Bensana, “AGATA, a lab bench
project for spacecraft autonomy”, iSAIRAS, 2005

[2] G. Verfaillie, M.C. Charmeau, “A generic modular
architecture for the control of an autonomous spacecraft”, 5th
International Workshop on Planning and Scheduling for
Space (IWPSS), 2006

[3] M. Lemaître, G. Verfaillie, “Interaction between reactive
and deliberative tasks for on-line decision-making”, ICAPS
2007 Workshop on Planning Plan Execution for Real-World
Systems, 2007

Filename: m102-Charmeau.doc
Directory: D:\F

Drive_new\conferences\iSAIRAS\MemoryStickLoad\Manuscripts\SESSION 22
Template: C:\Documents and Settings\klittle\Application

Data\Microsoft\Templates\Normal.dot
Title: Author Guidelines for 8
Subject:
Author: Larry Bergman
Keywords:
Comments: iSAIRAS 2007 Paper Template
Creation Date: 12/7/2007 5:44:00 PM
Change Number: 5
Last Saved On: 12/7/2007 6:14:00 PM
Last Saved By: CNES
Total Editing Time: 40 Minutes
Last Printed On: 3/4/2008 1:11:00 PM
As of Last Complete Printing
 Number of Pages: 7
 Number of Words: 4,242 (approx.)
 Number of Characters: 24,182 (approx.)

