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Abstract 

 
AGATA is a research and demonstration program 

led by ONERA and CNES on the topic of autonomy for 
space systems. Current work consists in the 
development of a testbed, including a spacecraft 
simulation and ground segment tools for operations. 
The on-board software of the spacecraft is based on a 
new architecture dedicated to autonomous systems and 
a new process of software development and validation 
is being tested with the objective of mastering more 
easily the complexity added by autonomous functions 
in a spacecraft architecture. The first step of this 
process is the description of a decisional architecture 
which has to be translated into a real-time software 
architecture before being implemented and tested on 
the testbed. The process is largely model-based and 
partly automated by a Java code generator. In this 
paper, we describe the simulation framework and the 
process used for the on-board software development 
and validation. 
 
 
1. Introduction 
 

There is a gap between in-flight experiment of 
spacecraft autonomy and its operational use on a space 
project. Even flight-proven algorithms may not easily 
convince project managers that they can be used safely 
and without additional cost. This is why CNES and 
ONERA started a few years ago a research program 
dedicated to spacecraft autonomy the purpose of which 
was to make on-board autonomy a ready-to-fly 
technology. Parts of the activity consist in defining 
algorithms for on-board planning or advanced FDIR 
and implement them in a specific architecture. This 
architecture is based on decisional components with 
both reactive and deliberative behavior. How to 
translate this decisional architecture into a flight-
software architecture, while respecting industrial 
constraints and safety and validation requirements is 

the challenge that we address through the AGATA 
demonstration program.  
 
2. The AGATA program 

 
2.1. Partners and context 
 

In July 2004, CNES and ONERA signed an 
agreement to start a common research program on 
autonomy for space systems. Since then, a team of 
ONERA researchers and CNES engineers have been 
working together with the same objective: federate 
research activities on autonomy through a 
demonstration project. This program is composed of 
research studies on topics such as architecture, 
autonomous planning and diagnostic, software 
development and validation methods. The results of 
these studies are applied to the AGATA (Autonomy 
Generic Architecture - Tests and Application) lab 
bench which is being built for this purpose.  

The LAAS-CNRS plays a part in the research 
activity by providing its experience in decisional 
architecture for robotics and diagnosis algorithms. 
Industrial partners are also involved in this program. 
Their point of view is particularly useful and helps to 
produce a final software architecture compliant with 
industrial requirements. 

 
2.2 Objectives 
 

The main objectives of this program are to: 
- study feasibility of high autonomy levels for space 

systems (except launchers) 
- demonstrate the interest of autonomy and its 

impact on ground operations and operator skills 
- define and test a process for the development and 

the validation of software dedicated to autonomy 
- develop a rapid prototyping tool to evaluate 

autonomy concepts for future projects. 
The demonstration testbed provides the framework 

to reach these objectives. 



2.3 The ground demonstration testbed  
 

The aim of the demonstration is to study the whole 
system consisting of: 

- a space segment with one or several spaceships or 
one spaceship and several ground devices. In case of 
rovers, the aim is not to study their own autonomy, but 
just to model them as part of a larger system; 

- a ground segment which can be split into ground 
stations, a control center and mission centers. 

The satellite's behavior and its environment are 
simulated. The focus is put on the on board software, 
which can be either simulated as a functional software 
or integrated in the simulator as a real-time flight 
software. Hardware definition level in the simulation is 
precise enough to test FDIR algorithms and 
redundancy will be taken into account too in order to 
test reconfiguration scenarios. 

For the ground segment, which has not been 
developed yet, we intend to use as much as possible 
recent generic tools developed by CNES for its control 
centers. In order to get a feedback on the impact of 
autonomy on ground operations, real operators will be 
asked to control a simulated autonomous spacecraft. 

Several mission scenarios have been selected as 
candidates for a demonstration of the advantages of 
autonomy [1]. The first mission, currently the baseline 
for the studies, is an Earth monitoring mission. 

 
3. HOTSPOT, a virtual mission 
 
3.1. Fire and volcanoes monitoring 
 

This mission is inspired by the ESA Earth Watch 
program FUEGOSAT. It is an imaginary mission 
which has been defined to combine the need of a quick 
response to an event with the need of autonomous 
planning of on-board activities. The mission objectives 
are to detect, observe and monitor events such as fires 
or volcanic eruptions. Once detected, events must be 
localized and if possible identified very quickly by the 
satellite before sending alarms to the ground and 
planning an observation phase of the phenomena. Of 
course data must be downlinked as soon as possible to 
provide support to the ground intervention teams. On-
board reactive planning can help to associate a long-
term background mission which consists in monitoring 
predefined areas and a detection and alarm mission 
with short-term requirements. The planning system has 
to manage energy and memory resources. The mission 
is performed by means of a constellation of low Earth 
orbit satellites, but only one satellite is taken into 
account at present time in the demonstrator. 

Priority levels are associated to the monitoring 
requests. Those subsequent to a new detection have the 
highest level, and those related to the background 
mission have the lowest level. 

 
3.2. The mission architecture 
 

Two mission centers can send commands to the 
satellite. The main mission center is dedicated to fire 
monitoring, and the second one monitors the 
volcanoes. Both can receive the data emitted by the 
satellite as they share several ground stations. They can 
also receive the alarms triggered after the detection of 
a new hotspot and relayed by a geosynchronous 
communication spacecraft. 

In the current scenario, they do not have a direct 
access to the satellite for the commanding link. They 
have to send their command plans through the control 
center. An alternate scenario would enable this direct 
access. 

The commands send by the mission centers to the 
satellite are high-level requests.  They are related to the 
background mission only, as the observation requests 
linked to the hotspots detected on-board are generated 
by the on-board software. A request contains the 
coordinates of the area to be monitored, and the 
frequency of the monitoring task (once a day or once a 
week for example). 

The main mission center also has the possibility to 
tune the autonomy algorithms with specific commands, 
and to adjust the visibility level on the satellite's 
behavior by modifying the telemetry plan. 

 
3.3. A generic platform 
 

The satellite platform is a typical platform for LEO 
missions, without attitude maneuvering ability. A set 
of sensors, actuators, and communication and power 
subsystem hardware has been defined for the main 
platform functions interacting with the mission 
activities (AOCS, communication with the control 
centers, power management). Interface with the on-
board software has been defined at a functional level. 
In this simulation tool, low-level communication 
protocols are not simulated, as opposed to simulation 
tools that are used for operational tests of real 
missions. 

The occurrence of anomalies or failures can be 
triggered via the simulation control interface. 
Communication with ground segment tools is done by 
the exchange of telemetry and telecommand files, and 
potentially other files that could be useful for the 



observation of autonomy functions, such as event files, 
reports and so on. 
4. Validation issues 

 
4.1. Autonomy-related difficulties 
 

One of the challenges addressed in the AGATA 
program is to define a development and validation 
process adapted to highly autonomous systems and 
compliant with space industry standards. Usual 
validation methods are inappropriate for such systems 
because of the onboard decision capability associated 
with autonomy. Since the system reacts to events in a 
complex way depending on an unknown context, 
exhaustive testing is impossible. 

Mastering this complexity can only be achieved by 
applying a step-by-step development and validation 
process, from high-level autonomy algorithms testing 
to fully-integrated software validation. Key steps 
include the following: 

 - Define a generic architecture adapted to advanced 
autonomy needs and ensuring a low coupling between 
application processes so that testing may be done 
separately for each of them. 

 - Specify and test autonomy functions at decisional 
level in order to validate the algorithms before 
embedding them in the software. 

 - Prototype the flight software to check, without 
detailing all parts of the software, that high-level 
mechanisms trigger expected behaviors. 

 - Run functional validation tests on the functional 
simulator containing representative models of platform 
and payload hardware devices, and including 
communication with a control centre prototype. 

 - Run real-time validation tests on the real-time 
simulator running the on-board software on a 
calculator emulator and using the same models as the 
functional simulator. 

This process contains two software validation steps: 
Functional validation is separated from strictly real-
time validation. Functional simulations are used to 
validate the decisional behavior of the spacecraft and 
its interaction with the ground control, whereas real-
time simulations are centered on software behavior 
with respect to hard real-time constraints. 

 
4.2. An adapted validation process 

 
As detailed in the software development section, the 

leading idea in the AGATA program is to apply an 
iterative and incremental development process. This 
guideline will allow to perform part of the validation 
process directly at model level and use auto-code 

generation to transfer the validated properties to the 
software code. Properties that cannot be verified at 
model level will be validated progressively on the 
auto-code through successive increments and 
iterations. This approach allows to focus on specific 
subsets of the onboard software code that need to be 
validated over different iterations. 

As demonstrated, validation is largely based on the 
model-based approach and on the incremental and 
iterative development process. The two guidelines are 
to validate as much as possible of the software as early 
in the development process as possible (directly at 
model level when applicable), and to use auto-code 
generation in order to reduce the validation effort 
related to implementation. 

This validation process is being tested on the virtual 
HOTSPOT mission. A generic decisional architecture 
adapted to autonomy needs was designed and used to 
validate high-level algorithms. Then, after a decisional 
software was prototyped with the Esterel language, the 
functional software, auto-coded in Java language from 
an UML specification, was tested in a first version of 
the simulator. This functional simulator will soon be 
upgraded to enable real-time simulation in order to 
perform the last validation step to confirm onboard 
autonomy as a ready-to-fly technology. 
 
5. Decisional architecture  
 
5.1. A generic architecture 
 

AGATA generic architecture aims at specifying the 
decisional mechanisms of the on-board software. As 
the definition of a whole autonomous system may be 
very complex, we chose to describe it as a modular 
structure. Modules are built on the basis of a common 
pattern and connected together to form a global 
architecture. The objective is to describe the expected 
behavior of the system in such a way that it is easy to 
understand and to validate. 

Each module is in charge of controlling a part of the 
system and of handling the data associated to this part. 
It takes into account requests and information coming 
from other modules and can send requests or ask 
information to other modules. To avoid potential 
decision conflicts it cannot have direct access to the 
part of the system controlled by another module. 

Each module is built on a sense/decide/act pattern. 
The module maintains its own knowledge of the state 
of the system part it controls, on the basis of an 
internal model and data acquired from other modules 
or from hardware elements (such as sensor 
measurements). 



The module uses this knowledge and the requests it 
has received to decide on which action to perform 
(actions include sending a request or a command, 
changing its behavior, reporting an event, or even 
doing nothing). 

Even if the modules are all built following the same 
pattern, we can distinguish different types of modules. 
Low-level modules which control hardware parts are 
called monitors. The decisions they can make are 
limited to local control loops and FDIR functions. 
They process the data that are used by higher-level 
modules. The highest-level modules control the global 
behavior of the satellite. One possible decisional 
architecture based on these modules is a hierarchical 
architecture with a "mission" module at the top level 
[2]. 
 
5.2. Reactive and deliberative tasks 
 

Each module can make a decision and produce new 
requests addressed to itself or other modules. The 
decision-making process combines two tasks: a 
reactive control task and a deliberative reasoning task 
[3]. The reactive control task analyses the current state 
of the module and new requests or new events that 
have been received. It can either react immediately, 
using pre-defined decision rules or algorithms with 
short computation time, or decide to trigger a 
deliberative task. That task runs an algorithm which 
needs some time to produce an optimized result, such 
as planning or diagnosis algorithms. It can provide 
intermediate results and is interrupted by the reactive 
control task when the final result is due. The longer the 
computation time allowed, the better the final answer. 

The solution delivered by the deliberative task is 
only an advice, and the reactive control task decides 
whether to follow it or not. The control task should 
always be able to make a decision, even without any 
answer from the deliberative task. This decision may 
not be an optimized one, but the decision process must 
not be blocked by the deliberative task. 
 
6. Software development 

 
6.1. Software architecture 

 
Once the decisional architecture has been defined, 

the next step is to translate it to a software architecture 
taking into account the constraints associated to 
embedded critical real-time software. 

The fulfillment of some of the constraints might 
require to alter the decisional architecture, but the idea 
here is to comply with the constraints, remaining as 

close as possible to the theoretical architecture 
designed previously. For example, good practice 
development rules in real-time software state that the 
higher the number of interacting tasks, the harder to 
prove any determinism of the final software. 
Therefore, the flight software cannot implement the 
decisional architecture as given, with potentially 3 to 8 
tasks per module and more than 20 modules. Thus the 
software tasks might be defined in order to fit the 
decisional architecture with a lower granularity (all 
tasks defined in the decisional architecture were used 
as undividable entities, and sets of those tasks were 
combined as software tasks), and to minimize 
interactions between each tasks (both in terms of direct 
communication and access to shared data). 

 
6.2. A two-step development process 

 
For AGATA, a two-step development process is 

followed: 
- an early development cycle based on a 

synchronous language – Esterel – that focuses on the 
integration of autonomy-related algorithms (such as 
on-board planning), and aims at prototyping and 
validating the decisional part of the software, and 
setting up the communication interface with the 
simulator; 

- a model-based approach that consists in writing a 
complete formal specification of the software in UML 
2.0 and uses an auto-code generator to produce the 
Java code for this asynchronous software. 

Both implementations are coded in Java language 
using the Esterel to Java compiler for the “Esterel-
based” approach and a home-made UML to Java auto-
code generator for the “UML-based” approach. 

This dual development process produces two 
different implementations of the same functional flight 
software, acknowledging the same interfaces, and 
ready to run in the simulator. Although they are 
independent, those two versions are also connected 
since the synchronous “Esterel-based” implementation 
is used as a testbench to validate new mechanisms and 
algorithms before they are applied to the UML-based 
implementation. Common interfaces are defined for 
both versions so that, beyond compatibility with the 
same simulator, they can also use common libraries 
(mathematical calculations, astrodynamics classical 
functions,…). Furthermore, identical data structures 
(“classes” in the formalism of UML or Java) are used 
in both implementations so that they only have to be 
validated once. 

Aside from its own purpose, described later on, the 
Esterel-based implementation is largely used as an 
intermediary step in the development of the UML-



based one. The leading idea here is to benefit in the 
UML-based implementation from the preliminary 
synchronous modeling permitted by synchronous 
languages like Esterel. These advantages are mainly: 

 - a sound mathematical semantics for concurrency, 
enforced by the compiler; 

 - the support of the two most common synchronous 
execution patterns: event driven and clock-driven; 

 - the simplicity of the language and its associated 
formal model, making formal and practical reasoning 
tractable, and giving to the Esterel code the flavor of 
an executable specification. That framework allows to 
validate before-hand part of the code used in the UML-
based implementation, such as data handling classes, 
as well as prototyping new autonomy-related 
algorithms. 

 
6.3. Esterel-based approach 

 
The Esterel-based implementation greatly simplifies 

the solving of scheduling problems, as the compiler is 
able to compute the ordering of the actions to be done 
during a reaction step. This allows to focus on the 
behavioral part of the software: given a set of inputs, 
what should be the outputs in order to fulfill the 
mission objectives. 

This synchronous approach, compared to 
asynchronous ones, makes it easier to implement and 
validate the state machines and other behaviors defined 
in the decisional architecture: They can quickly be 
tested in the simulation environment, and potential 
weaknesses in those mechanisms – and their associated 
improvements – can be highlighted. Another benefit to 
the use of Esterel, is to separate the behavioral part of 
the software (coded in Esterel) from the algorithmic 
part (coded directly in Java). The Java algorithmic part 
of the software, shared with that of the UML-based 
approach, is hereby validated for both implementations 
in this decoupled framework – which decreases the 
validation effort. 

 
6.4. UML-based approach 

 
The UML-based implementation primarily consists 

in writing a detailed description of the software in 
UML 2.0. The UML model contains both architectural 
and detailed specifications (from high-level 
requirements to the definition of the method bodies 
described in UML pseudo-code). The two objectives 
here are to contain the whole specification of the 
software in a single model instead of several text 
documents and to allow the use of automated 

generators to produce either documentation or the 
software auto-code. 

This model-based approach allows an incremental 
and iterative development process instead of the 
classical V-shaped development cycle. The software 
development is divided into several increments 
(mapped onto software functional objectives), and 
each of those is then subdivided into a few iterations 
that contain different subsets of the specification for 
the current increment. This approach grants a 
progressive validation of the software, enabling an 
early and less costly detection of potential mistakes in 
the specification. However, such a development 
process relies extensively on auto-code generation to 
quickly prototype the software after each iteration, 
which corresponds to evolution of the UML model. 

 
6.5. The AutoJava generator 

 
The auto-code generator used in AGATA is a RT-

Java generator prototype developed specifically for the 
project. Although this paper only addresses the 
functional flight software – i.e. software simplified 
from most real-time concerns – the long-term objective 
of the project is to produce a real-time software. 
Therefore the UML model contains the description of 
the functional software and the associated real-time 
specification. 

Until recently the UML standard did not contain 
any framework to describe real-time properties of the 
objects in the model, therefore, for AGATA, a profile 
named “AutoJava” was developed for this purpose 
(currently, real-time properties are only used as hints to 
help specify the behavior of the functional flight 
software). The AutoJava profile is associated with a 
RT-Java auto-code generator (also referred to as 
“AutoJava”) that can be applied to the UML model 
completed with the profile for real-time aspects. The 
RT-Java code generated is then automatically 
converted to standard Java by a bash script (a few 
manual modifications remain) and tested into the 
simulator. This auto-code generation process in two 
steps was chosen in order to remain compatible with 
both real-time (in RT-Java) and functional (in standard 
Java) implementations of the software. 

The combining of the AutoJava generator (to 
generate RT-Java code from the UML model) and the 
bash script (to convert the RT-Java code into standard 
Java) produces an automated tool to generate Java 
code from a UML specification. 

This development process is currently being applied 
in AGATA. Since the theoretical generation tool 
presented early on is still under development, the 
generation of Java auto-code from the UML model still 



requires manual interventions from the developer. 
Nevertheless, the process is converging and should be 
operational soon. 

 
7. AGATA demonstrator architecture 
 
7.1. The software/simulator interface 
 

The AGATA demonstrator is composed of an 
onboard software and a satellite simulator that includes 
environment simulation (i.e. inputs to all sensors in the 
satellite). As stated before, the simulator provides the 
user with means to control the simulation through 
environment events such as hardware anomalies or 
failures and hotspot occurrences. Its interface is 
defined for the purpose of software validation and it 
offers all functionalities necessary to verify any 
functional behavior that needs to be checked. The user 
interface is a Tcl-Tk layer that sits on top of the C code 
of the simulator, and it can be easily upgraded to fulfill 
new simulation control requirements. 

Simulator and onboard software communicate 
through a functional interface that masks low-level 
communication protocols. This interface defines a set 
of functions that are available for each side to interact 
with the other side: The simulator can activate the 
onboard software at the required frequency, and the 
software can read equipment inputs from the simulator 
and send the subsequent outputs. However, whereas 
the simulator is mainly coded in C language, the 
onboard software is coded in Java language. 
Communication between the simulator in C and the 
onboard software in Java was enabled by the Java 
Native Interface (JNI) and the Simplified Wrapper and 
Interface Generator (SWIG). JNI was used to activate 
the Java code of the onboard software from the 
Simulator (including the loading of the Java Virtual 
Machine), and SWIG was used to call C functions on 
the simulator side from the software. 

 
7.2. A simulator-driven demonstrator 

 
The functional interface setup between the onboard 

software and the simulator is largely based on the 
simulator internal architecture. The simulator is based 
on a Kernel that activates various simulation models 
sequentially at their specific frequencies and manages 
communication between them. Typical models include: 

 - standard platform hardware: GPS receivers, Star 
Trackers, Thrusters,… 

 - specific mission hardware: a “Hotspotter” that 
aims at detecting hotspots on the Earth surface, an 
“Imager” that can take images of areas nearby 

hotspots, a high-definition transmitter to download 
pictures, a mass-memory dedicated to mission needs 
and an alarm transmitter via geosynchronous relay to 
warn the ground segment upon discovery of new 
hotspots 

 - environment: current orbit, position, speed and 
orientation of the satellite, current date,… 

The simulation Kernel activates the simulation 
models in a static predefined order based on user’s 
preferences and models frequencies. Most importantly, 
the onboard software is also viewed as a “simulation 
model” by the simulator, and is activated intermittently 
as a whole, at the highest frequency of the software 
functional tasks. Upon activation, it executes all the 
actions it needs to run during this cycle whatever the 
true duration of these actions. When all actions in the 
cycle have been executed, the onboard software stops 
and releases CPU resources in favor of the simulator 
Kernel, allowing it to activate the next simulation 
model. 

 
7.3. Computing power 

 
In the current simulator/software activation 

principle, the demonstrator may only prove functional 
properties of the onboard software. These are 
substantial-enough objectives to start with, and are 
currently being fulfilled by the AGATA team.  

However, final project objectives lie far beyond 
these and a real-time version of the simulator is being 
developed at CNES. In fact one of the main foreseen 
bottlenecks for implementing autonomy concepts is 
related to the on-board computing system power. The 
relation between on-board processing power and 
achievable levels of autonomy will be addressed 
during the project first by measuring memory or power 
needs when running the functional version of the 
software and then with a new simulator based on a 
calculator emulator in “real-time” interaction with the 
simulation models via a simplified I/O server. The 
onboard software will be executed continuously on this 
emulator and will be submitted to real-time constrains, 
such as limited CPU resources.  

Future developments should include a hybrid 
version of the AGATA lab bench where real on-board 
CPU will be used to run the proposed software. 
 
8. Conclusion 
 

A first version of the on-board software dedicated 
mainly to hotspot detection and localization has been 
integrated in the simulator. The whole process was 
used for the first time to perform this development. It 



highlighted some hurdles mostly related to the UML 
tool and the integration of a functional Java code in the 
simulator. This first increment in the cyclic 
development helped to adjust some development rules 
that will be used for the next increments. 

The next version will include the data-handling 
system and the telecommand and telemetry 
management software which will enable connection 
with the ground segment tools. 
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