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Abstract

Localization is one of the most critical function for the
ExoMars rover autonomy. Both the daily distance crossed
and the number of iterations needed to reach a site of in-
terest depend on its precision. The Visual Motion Esti-
mation system presented in this paper is designed to sat-
isfy the ExoMars project needs on the localization func-
tion. Its main features are : the respect of the very con-
strained resources of the flight computer, an accurate short
term (20cm) and long term (100m) localization given at
0.1Hz against more than 1Hz for terrestrial systems, effi-
cient algorithms to fit time and memory requirements and
a modular design to balance computation time and local-
ization accuracy. The algorithm is tested on more than
300 real images acquired in a Mars-like environment ev-
ery 200mm. All images are precisely localized in 6D by a
laser tracker. We therefore give the real performances of
our VME function that can later be used to specify a visual
localization function for an autonomous navigation sys-
tem. Our function demonstrates a localization accuracy of
less than 2m after a traverse of 100m, when accelerome-
ters are used to correct rover pitch and roll. Adding two
extra azimuth correction steps allows to get an error infe-
rior to 1m.

1 Introduction

CNES acts as a technical support to ESA in the Exo-
Mars project, and has already made available to the project
the results of its past developments (Mars96, MSR mis-
sions, R&D on rovers). This includes stereo bench design,
perception and path planning algorithms, and tests facili-
ties. We have been investigating visual motion estimation
issues for 7 years as it was identified as a key component
of autonomous navigation systems.

ExoMars context ExoMars will deploy a rover carrying
a comprehensive suite of analytical instruments dedicated
to exobiology and geology research. The rover will have
to demonstrate high mobility to allow the efficient explo-
ration of sites of scientific interest, and this with limited
human intervention [1]. This implies the on-board and
autonomous execution of two tasks : the path planning

and the trajectory servo-control. The correct execution of
these tasks requires an accurate localization function for
two reasons. Firstly, it is critical during trajectory servo-
control to insure the safety of the rover. The localization
system provides to the locomotion system the current lo-
calization of the rover in its local navigation map which
contains obstacles or important slopes to avoid. Secondly,
it is important to plan efficient and optimal trajectories.
On one hand, the computation of local navigation maps
takes into account localization errors to enlarge detected
obstacles. High errors will then result in bigger virtual
obstacles and reduced navigable areas. On the other hand,
the localization function gives the rover position with re-
spect to its goal and allows to update the right path to
reach it. The ExoMars rover requirements stipulate that
the rover should execute journeys up to 100 meter length
with a relative localization accuracy better than 5% of the
path length and with a design goal of 1%.

The localization function has to give 6D coordinates
of the rover at high frequency (about 5Hz) to the loco-
motion system and at lower frequency (about 0.01Hz) to
the path planing system. Usually, an IMU is used to sat-
isfy high frequency requirements for on-board self local-
ization. Unfortunately, integrating accelerometers signal
did not provide accurate results in our past experiments
to localize a rover. The integration of an acceleration sig-
nal along X and Y axis of a rover moving at 1 cm/s is
very challenging as shocks of its wheels on the soil sur-
face along Z axis create accelerations hundred times big-
ger than accelerations of the motion. Other on-board so-
lutions are wheel odometry and Vision Motion Estimation
(VME) techniques. We present in this paper a VME algo-
rithm to be combined with a wheel odometry algorithm to
satisfy frequency and accuracy constraints. It is designed
to measure the rover displacement from distant images of
an unstructured rough ground. The algorithm is composed
of two loops to optimize the execution time and the local-
ization accuracy.

Related work As far as we know, the idea of estimat-
ing camera motion from a sequence of images appeared
in early ’80s [2]. It has been a very active field since
camera quality and computation power have greatly im-
proved. This technology is, in particular, very attractive to
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solve the problem of self localization of rovers targeting
autonomous planetary exploration [3, 4, 5]. Indeed, there
are few external localization means, IMU-based localiza-
tion is not adapted, and wheel odometry suffers from the
difficulty to model and measure the wheel/soil contact.

We can identify two main issues in designing a visual
motion estimation system : the matching or tracking of
features in images, and the optimization process that esti-
mates the motion and optionally the scene structure.

Concerning the matching or tracking, most solutions
found in the literature assume small displacements in pix-
els between acquisitions, or relatively good a priori esti-
mates. This facilitates image feature tracking or matching
in 2D or 3D, but implies high frequency processing [6] or
a poor stereoscopic configuration. In this way, our work
differs by focusing on large displacements. The proposed
method is related to the work presented in [7]. Yet, it
mainly differs on two points. Firstly, they compute an
initial set of matching landmarks using a visual similar-
ity measure, whereas we use only geometrical constraints
considering that good relative attitude measurements are
provided by gyros. Secondly, we introduce a different
matching score that is more precise to select matching
landmarks.

Concerning the optimization, three types of tech-
niques are identified in the literature : (VO) the optimiza-
tion of solely two acquisitions (Visual Odometry field),
(SLAM) incremental approaches using either Kalman fil-
tering or particle filters (Real-Time Localization field),
and (BA) global approaches using bundle adjustment
(Structure From Motion field). In [8], they present three
variations of the SLAM formulation for planetary explo-
ration rovers. They assume that images are taken every
20mm which represents in the end 10 times more images
than in the approach discussed here. We propose an hy-
brid VO/BA on-board approach to satisfy speed and accu-
racy requirements. VO is executed after each acquisition
(every 200mm), while a local BA is executed after each
path planing (2.5m). A similar approach, yet more com-
plete, is presented in [9]. Nevertheless, we focus here our
attention on on-board autonomous solutions. We include
accelerometers to constraint the BA process. And we pro-
pose to track features using homographic transformations.
Local bundle adjustment is now in great boom as it allies
accuracy and real-time constraints [10, 11, 12].

The challenge is now to improve long range localiza-
tion with loop closing and SLAM methods [13, 14, 15] or
data fusion (lander, orbiter, multiple rovers) [9]. These
systems have the ability to recognize visited places by
potentially different sensors and consequently to adjust
model parameters to get a very accurate localization. We
do not present such a system that requires more memory
and computation time, or on-earth computation assistance.
In this article, we focus on the localization accuracy at
100m, which is the nominal distance that will be covered
by the ExoMars rover to reach its daily goal.

Proposed method and its evaluation We propose in
this paper a VME algorithm to be combined with a wheel
odometry algorithm to satisfy frequency and accuracy
constraints. It is designed to measure the rover dis-
placement from distant images of an unstructured rough
ground. The algorithm is composed of two loops to op-
timize the execution time and both short and long range
localization accuracies : VO-SYS (composed of sub-
systems VO3D and VO2D) and LSBA. In the first loop,
VO3D is responsible for finding a good set of matching
features between two acquisitions. It was initially pre-
sented in [16]. It uses the output of wheel odometry and
gyros to speed up the matching process and increase its
robustness. This sub-system is next completed to improve
the rover localization by two ways. Firstly, point fea-
tures are tracked in images and there re-projection error is
minimized with respect to the camera motion in the sub-
system VO2D. Secondly, a bundle adjustment is applied
on tracked points between two path planing operations in
the second loop (LSBA).

Presented methods and their variations are compared
and evaluated on simulated and real images. The evalua-
tion first concerns computation time and memory needs,
next localization accuracy. Computation time and mem-
ory needs are indicated for the first loop, i.e. VO3D and
VO2D, that are the most critical ones. The bundle adjust-
ment process is not evaluated here as it is not yet fully
optimized. Nevertheless, this function benefits from re-
laxed constraints as it is ran when the rover is stopped.
We do not identify any major difficulty to have this op-
timization executed on-board in a reasonable amount of
time. The random process behind incremental localiza-
tion is very complicated and requires a huge amount of
data to be characterized. To tackle this issue, a validation
method which includes: a limited set of images fully lo-
calized, the simulation of gyros data, the pseudo-random
generation of trajectories from real data, and the use of our
rover simulator for Monte Carlo like tests, is introduced.

The paper is organized as follows. Section 2 gives
a summary of requirements on the localization function
and a top down description of the localization system we
designed. Section 3 presents the evaluation framework.
Section 4 reports on evaluation results. Finally, section 5
concludes with recommendations for the implementation
of the vision-based localization function of the ExoMars
mission and suggests future research directions.

2 Localization System Requirements and
Design

The localization system is designed to meet tight con-
straints on computation time, memory needs and accuracy
specified by the ExoMars project. We first present the au-
tonomous navigation process to better understand local-
ization issues. And we provide a summary of the ExoMars
mission requirements on the localization function. Next,
we carry on with an overview of the localization system
to end with a detailed description of the VME function.
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2.1 Context and Requirements

The localization system is a key component of the au-
tonomous navigation process described in figure 1. The
rover is equipped with a stereo bench at the top of its
mast for navigation purpose (NavCams). It is designed
to perceive the 3D environment around the rover up to
a distance of 6m. A navigation map is build from these
3D data. It identifies navigable areas and obstacles ac-
cording to the rover crossing capabilities. The system is
then capable of finding a safe path of 2.5m length in the
perceived environment. This step is called path planing
and is executed at each Pi position where Po is the ini-
tial rover position of the day. It is repeated every 2.5m
due to the vanishing reliability of the stereo vision pro-
cess beyond 3m from the rover (in the ExoMars context).
The rover localization is required at each Pi position to
compute the optimal path toward the goal and to finally
assert the goal is reached. Between two positions Pi and
Pi+1 the rover moves blinded and has to rely on its local-
ization system and navigation map, i.e. map of navigable
areas defined relatively to the Pi position and computed
at the last path planing step Pi. The rover location has
to be accurate to safely reach the next Pi+1 position and
provided in real-time to insure the stability of the trajec-
tory servo-control. For this purpose, a second stereo bench
(LocCams) is taken on board and dedicated to the visual
localization function.

Figure 1. : Autonomous Navigation

Given the autonomous navigation iterative process
and the rover hardware configuration, the following re-
quirements were identified :
Trajectory servo-control : real-time accurate localiza-

tion of the rover at 5Hz. A relative localization ac-
curacy of 5% is specified and a design goal of 1% is
expected.

Goal reach : the daily goal Pg specified by the ground
segment has to be reached with a relative accuracy of
5% and a design goal of 1%. It is nominally located
at 100m from Po.

Computation time : as we will see later, visual motion
estimation has to be executed every 10 seconds.

2.2 Localization System Overview
Wheel odometry suffers from the difficulty to model

and measure the wheel/soil contact and it results in im-
portant localization errors. We learned from the NASA
MER mission that wheel odometry estimates rover posi-
tions and orientations with a nominal accuracy of 10%.
An alternative solution is to use visual motion estimation
(VME). Unfortunately, it does not run in real time on the
targeted platform. It thus comes as a complementary mod-
ule to wheel odometry. This latter provides real-time lo-
calization and is adjusted every 200mm by visual odome-
try. 200mm is the distance between two rover axles. The
VME function we present, takes as input two stereoscopic
images taken at time instants (t − 10s) and (t), the corre-
sponding attitude variations provided by gyros integration
and the translation estimate from wheel odometry. These
inputs are processed at 0.1Hz (every 200mm for a rover
speed of 20mm/s). Accelerometers are applied at each
position Pi when the rover is stopped to correct estimated
pitch and roll. In addition, a sun sensor can be used to
correct the estimated rover yaw. An overview of the local-
ization system is given in figure 2.

Rover Locomotion
sensors

Attitude (Gyros)

Accelerometers

Sun Sensor

Wheel Odometry
Rover Localization

VME

? s

100s

10s

0.2s

Initial localization

Figure 2. : Localization System Overview

2.3 Visual Motion Estimation
We designed two basic functions. The first one, called

VO-SYS, provides the localization of the rover after each
acquisition. Its accuracy is limited in time. The second
one, called VME-SYS, integrates a bundle adjustment to
improve the long range accuracy.

2.3.1 Visual Odometry
The visual odometry system called VO-SYS in fig-

ure 3 is composed of two sub-systems : the first one VO3D
is designed to find a subset of good matches and to pro-
vide a first motion estimate; the second VO2D provides a
refined motion estimate based on many tracked features.
The overall allows to provide an accurate motion estimate
at the frequency required by the mission.

Perception Input images are first degraded by 4 to a res-
olution of 320x256 pixels. This step is mainly done to re-
duce the execution time of the dense stereo process and of
the Harris corner detector. Figures are given in section 4
Degraded images are next rectified thanks to an fine cor-
rection bitmap that implicitly models geometrical distor-
tions and camera positions to fit a perfect model of pinhole
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Figure 3. : Visual Odometry

cameras mounted on a rectilinear stereo rig. An optimized
stereo process is next applied on gradient images to get the
depth of each pixel of the left view.

Point matching The matching aims at identifying simi-
lar landmarks a priori detected in left images at (t− 1) and
(t). This step is crucial for motion estimation. Landmarks
are detected with the Harris corner detector, that was mod-
ified to select 300 points well distributed in images. It is
crucial in presence of shadows or important variations of
textures. Next, points that are geometrically compatible,
knowing the rotational motion R provided by an external
sensor (gyros), are matched in 3D. The algorithm relies
on the observation that lengths and angles are preserved
in the euclidean space. It then requires a sufficiently ac-
curate stereoscopic triangulation. But, this approach has
the main advantage of being invariant to image variations.
A detailed description of the matching process is given
in [16]. A first motion estimate is finally computed from
these initial matches.

Point tracking The Harris corner detector is a good op-
erator to detect features to be matched in two images.
However, corner localization is not sufficiently accurate
for motion estimation. This issue is then solved by track-
ing features. As we have a first good motion estimate,
the tracking is efficiently done by block-matching and a
ZNCC operator. The matching is either executed on de-
graded images or on raw images at full scale. In this latter
case, a local rectification is applied at the proper resolu-
tion. This approach is identified by the prefix HR in com-
ing figures. We have also investigated patch deformation
by a local homography to improve the tracking accuracy

and robustness.

Accurate motion estimate Finally, the motion is esti-
mated by minimizing the projection error of tracked points
in the past left acquisition. Given oi the 2D observation of
the feature i at (t − 1), Mi the 3D feature at (t), and P the
projection matrix. The motion estimate is the solution of
the following equation :

[R, T ] = argmin
[R,T ]

⎛⎜⎜⎜⎜⎜⎝
�
i

�oi − P.(R.Mi + T )�2
⎞⎟⎟⎟⎟⎟⎠ (1)

The Levenberg-Marquardt optimization technique is ap-
plied to find R and T . About 25 iterations are performed
to reach a stable solution. In addition, we have further
constrained the optimization process by including obser-
vations on n past images. The objective is to limit integra-
tion errors while keeping the optimization process simple.
The previous equation is thus modified as follows without
changing the number of parameters to optimize :

[R, T ] = arg min
[R,T ]t→(t−1)

(2)
⎛⎜⎜⎜⎜⎜⎜⎝

t−n�
j=t−1

�
i

�oi j − P.([R, T ](t−1)→ j[R, T ]t→(t−1)Mi)�2
⎞⎟⎟⎟⎟⎟⎟⎠

In our experiments, n is set to 4. It corresponds to the
mean number of images where a point can be identified.

2.3.2 Local Bundle Adjustment
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Figure 4. : Bundle Adjustment

The visual odometry system is sufficient to give the
short-term localization of the rover but the error grows
rapidly after few meters. A first solution is to use ac-
celerometers to correct the rover pitch and roll each time
it stops. A second solution is to optimize by bundle ad-
justment the parameters of the overall image sequence,
i.e. rover and features positions. But it would require
too much computation time and power to be run on-board
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over data of a complete trajectory. Nevertheless, a local
bundle adjustment is acceptable. Therefore, the optimiza-
tion technique is applied on data gathered between two
path planing steps, i.e. every 2.5m. These key positions
have also the advantage of giving access to accelerome-
ters to measure rover pitch and roll as it is stopped. These
constraints can be included in the optimization process as
explained in [11]. We use the library “A Generic Sparse
Bundle Adjustment C/C++ Package” [17] to evaluate this
approach. Unfortunately, pitch and roll constraints can
not be easily included with this library and we removed
“known” angles from the optimization for now.

3 Evaluation Framework

Visual Motion Estimation (VME) is a complex sys-
tem difficult to design and evaluate. On one hand, there
are manifold parameters that can be tuned : field of view,
stereo bench baseline and position, algorithms possibili-
ties. On the other hand, the variability of possible obser-
vations, i.e. images, is huge. The influence of parame-
ters can not always be tested on the terrain for practical
and cost reasons. We thus use the terrain and rover sim-
ulator to study the design of the VME system. It gives
an overview of VME performances and allows to com-
pare methods. Simulations are next completed by experi-
ments with the IARES rover. These experiments are pri-
mordial to assess for system performances. This section
first present the simulator, next the evaluation process that
was setup to evaluate VME performances.

3.1 Simulations
The validation and study of algorithms and cameras

arrangements is conducted on simulated images given by
our rover simulator (RS). RS is a real-time functional
rover simulator which includes 3D modeling and kine-
matic simulation of IARES and ExoMars chassis, 3D
modeling of the terrain and rocks and shadowing. The
rendering is done by the Ogre engine1.

For now, a straight path is executed by the simulated
rover. Besides, we have fixed the position of the stereo
bench to the expected position on the ExoMars rover. The
stereo bench baseline is also set to 80mm. Optimal field
of view and pitch values of the stereo bench are then stud-
ied. Simulations, see figure 5, reveal that a field of view
of 40o and a pitch of −45o allow to get best performances.
This is of course valid for the presented algorithm. In ad-
dition, performances degrade slowly around these values
as soon as accelerometers are in the loop. We will see that
compared to performances on real images a factor of five
is observed.

3.2 Real Images Exploitation
3.2.1 Test Data

A test campaign was conducted on the SEROM site
under the following conditions :

1http://www.ogre3d.org
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Figure 5. : Performances on simulated images.

• stereo bench position and orientation compatible
with the configuration of the ExoMars rover at that
time (elevation of ˜900mm, pitch of 45o, focal length
of 8mm),
• precisely localized acquisitions : 0.05mm in position
and 0.02o in attitude over each direction thanks to
the SMR plane calibrated and localized by a laser
tracker,
• continuous trajectory of 70m executed by the IARES
rover,
• ˜200mm between acquisitions (330 acquisitions),
rover stopped,
• various types of ground, (panel of rock densities
present on the CNES Mars yard)

(a) The stereo bench
and its SMR plane
mounted on IARES

(b) IARES going
through a rugged area

Figure 6. : Pictures of the acquisition campaign. The po-
sition and attitude of cameras are measured by the laser
tracker.
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Figure 7 shows the trajectory as it was executed by the
rover. This is the reference trajectory that is used to con-
struct our simulated trajectories as we will see. The figure
also gives an overview of the large panel of attitude varia-
tions that were measured between acquisitions.
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Figure 7. : Trajectory properties

3.2.2 Simulated Trajectories
Path Until now, our reference trajectory is 70 meter
long which is not sufficient to evaluate the VME func-
tion. In addition, a single trajectory is not representative
as localization performances are tightly linked to the inte-
gration of attitude variations errors and dead reckoning.
A bigger acquisition campaign is scheduled for august
2010. In the meantime, we generate new artificial tra-
jectories derived from the original one, in order to com-
bine estimation errors in different ways. This is simply
achieved by segmenting the initial trajectory into N sec-
tions (5m long each) that are afterward recombined ran-
domly to form new artificial trajectories of 100m length.
Furthermore, a new realization of the stochastic process
describing gyro and calibration errors is picked for each
generated trajectory. More details about the noise model
are given later. New trajectories are optionally corrected
in yaw to favor a rectilinear path. This kind of trajectory
was identified as a worst case for evaluations based on the
relative error. The evaluation ends up with a Monte-Carlo
simulation that allows to qualify the localization error.

Noise model The attitude data is subject to calibration
errors coming from the measurement noise and the un-
certainty on the gravity vector orientation. Measurement
errors are modeled independently by a zero mean Gaus-
sian distribution. They are added to laser tracker measure-
ments to model a real sensor. Note that accelerometers are
used at each Pi position when the rover is stopped. This
calibration is necessary to monitor the stable position of
the rover. By contrast, the sun sensor can be used less
often as the heading measurement is not critical. Never-
theless, it is preferable to use the sun sensor several times
a day to ensure a good long range localization of the rover.
In our experiments, a variance of 0.1o is used for all noise
sources.

4 Results

Memory The total amount of memory needed by VO-
SYS’ data is around 3MB. If the tracking is done at full

image scale, then an extra of 2.5MB is needed. It can be
reduced to 640KB if the tracking is done at half image
scale. Last, the LSBA process requires to save all tracked
points between two path planing steps, which should not
exceed some dozen of KB.

Time Table 1 presents the actual time consumption of
algorithms. One iteration of VO-SYS takes 260ms from
image pre-processing to motion estimation on our Intel
core 2 Duo E6550 @ 2.33GHz . Extra work is required to
get more accurate figures targeting the ExoMars mission
platform, the best way being to run algorithms directly on
a Leon-like architecture. However, a first extrapolation
allows us to say that one VO-SYS iteration should run in
less than 10s.

Table 1. : Execution time of V0-SYS-2 modules. Experi-
ments were executed on a CPU Intel core 2 Duo E6550 @
2.33GHz with 4096 KB of cache memory.
Sub-system Module Time on Linux (ms)
Perception Down sampling by 2 15
For Rectification 56
NavCams Stereo (SGRAD LINE) 97

Filtering 7
Total 175

PERCE-0 Down sampling by 4 22
Rectification 20
Stereo (SGRAD LINE) 75
Filtering 3

VO3D-0 Point detection 50
3D matching, motion estimation 80

V02D-1 Tracking, motion estimation 10
Total for the system V0-SYS-2 260

Accuracy Figure 8 shows the localization performances
that we get with VO-SYS and VME-SYS on real images
and with our evaluation framework. About 700 trajecto-
ries of 100m were generated. We can say that :
• First, it confirms that the original trajectory, as it is, is
not adapted to provide a good evaluation of localiza-
tion performances. A difference of 1% is observed
when the evaluation is ran on the repeated trajectory
or on the randomized and yaw corrected trajectory,
• As expected, the error grows rapidly if no calibration
with an absolute reference is done. In that case, the
error process is similar to a random walk process that
is known to have a variance ∝ √t. Of course, this
is not observed on the top figure (repeated original
trajectory),
• Correcting the attitude estimate with accelerometers
allows to greatly improve localization performances
as it partially breaks the random walk process. A lo-
calization accuracy of 2% is obtained on our worst
case scenario and less than 1% on the repeated origi-
nal trajectory,
• Correcting the attitude estimate twice with a sun sen-
sor gives finally a localization accuracy of less than
1%,
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• The bundle adjustment does not provide best perfor-
mances on random trajectories. This was expected as
it should perform better on continuous sequences of
images.
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Figure 8. : Localization performances on real images
with our evaluation framework. Calibration noises have
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i.e. without attitude calibration. Crosses : the attitude
given by VME is corrected by accelerometers every 2.5m.
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Figure 9 shows the attitude error evolution over time. As
opposed to stellar sensors that observe points at infinity,
roll and yaw are the best estimated angles while the pitch
is less accurate. In fact, it depends on the size of the im-
age overlap, i.e. the motion amplitute between two acqui-
sitions. Attitude errors are the main source of long range
drift and then can be reduced by looking more upward at
the expense of the short range accuracy. However, simula-
tions show that the localization error is not improved with
our algorithm. In addition, VME cameras might be used
to detect obstacles. In that case, they should point at the
close surrounding of the rover.

5 Conclusions and Perspectives

The localization system is a critical component of au-
tonomous rovers targeting planetary exploration. The lack
of external means to localize them implies the on-board
implementation of a self localization function. Visual mo-
tion estimation is then a key module to obtain an accurate
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Figure 9. : Attitude error evolution on real images with
our evaluation framework. Accelerometers are not used
here.

localization.
We have investigated ways to design an efficient vi-

sual motion estimation system that answers to the Exo-
Mars mission needs. We have presented in this paper the
results of our studies. It is now clear what can be the ar-
chitecture of a vision-based localization function for Ex-
oMars. In particular, a double loop estimation of the mo-
tion is necessary to get both short range and long range
accuracy. The same camera sensor can not provide both
short range motion length accuracy and long range atti-
tude accuracy. The first estimation loop, VO-SYS in this
paper, should then be designed to guarantee a precise mo-
tion length estimation. Simulations suggest that a field of
view around 40o and a pitch around -45o corresponds to a
good stereo bench configuration for this loop. Next esti-
mation loops are added to improve the long range attitude
estimation. It can simply consist of using accelerometers,
preferably in a bundle adjustment. And it is still better if
a sun sensor is used regularly.

The selected system design meets the ExoMars
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project needs as it was demonstrated with our prototype
and evaluation framework. VO-SYS, corrected in pitch
and roll, allows to get a localization accuracy of 2% after
a 100m traverse. Adding two extra calibrations with a sun
sensor allows to get a relative error under 1%. Moreover,
one iteration of the function should take less than 10s to
estimate the camera motion.

In future works, we will carry on with the study of our
bundle adjustment process. The objective is to identify
the best window size on which the optimization should
be conducted. Besides, we think that using overlapping
windows could improve the overall accuracy and this will
be investigated. In parallel, our bundle adjustment pro-
cess will be generalized to include navigation cameras im-
ages. There use can improve attitude estimation accuracy
as they look farther away. In addition, a target tracking
strategy could further improve the accuracy of the goal
reaching function.
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