
170

Towards an Autonomous Walking Robot for Planetary Surfaces

Martin Görner, Annett Chilian, Heiko Hirschmüller *

* DLR German Aerospace Center, Institute of Robotics and Mechatronics, Germany
e-mail: martin.goerner@dlr.de, annett.chilian@dlr.de, heiko.hirschmueller@dlr.de

Abstract

In this paper, recent progress in the development of
the DLR Crawler - a six-legged, actively compliant walk-
ing robot prototype - is presented. The robot implements
a walking layer with a simple tripod and a more complex
biologically inspired gait. Using a variety of propriocep-
tive sensors, different reflexes for reactively crossing ob-
stacles within the walking height are realised. On top of
the walking layer, a navigation layer provides the ability
to autonomously navigate to a predefined goal point in
unknown rough terrain using a stereo camera. A model
of the environment is created, the terrain traversability is
estimated and an optimal path is planned. The difficulty
of the path can be influenced by behavioral parameters.
Motion commands are sent to the walking layer and the
gait pattern is switched according to the estimated terrain
difficulty. The interaction between walking layer and nav-
igation layer was tested in different experimental setups.

1 Introduction

The exploration of planetary surfaces with mobile
robots is a very challenging task because long signal round
trip times prevent the robots to be remotely controlled
from earth. Thus, they must be able to navigate and fulfill
tasks autonomously in an unknown and unstructured en-
vironment. Possible tasks are sample collection, manipu-
lation and analysis as well as mapping of interesting sites.
Promising areas for retrieving useful samples are craters
and canyons. Such areas are usually very difficult to tra-
verse due to steep slopes, changing substrates and rugged
ground. In this kind of environment walking robots are
expected to show superior performance to wheel driven
rovers. Their advantages are, no need for paths of contin-
uous contact with the ground and the ability to step over
or on obstacles as well as to climb various rock forma-
tions. However, walking robots suffer from limited pay-
loads, which prevents them from carrying heavy instru-
ments. Thus, using a group of robots consisting of a large
wheeled rover for supply and long distance transport and
a team of highly mobile legged robots for local explo-
ration tasks seems to be a very promising solution. Such a
configuration poses many challenging problems of which
walking itself, crossing obstacles and autonomous naviga-
tion are the most immediate.

In our opinion an exploration robot should use a lay-
ered control architecture [1] consisting of a walking layer,

a navigation layer and a high-level task planner. The walk-
ing layer should be responsible for the basic tasks of sta-
ble standing and walking, but also provide reflexes for
non-flat terrain to overcome obstacles within the walking
height reactively. The walking layer should only use pro-
prioceptive sensors. The task of the navigation layer is to
guide the robot along an optimal path to a goal point. For
this, motion commands have to be computed and sent to
the walking layer. Furthermore, the walking layer could
send feedback data to the navigation layer, e.g. contain-
ing information about how often reflexes are triggered as
a measure of the ground properties. The navigation layer
needs to use sensors for perceiving the environment in or-
der to detect obstacles and plan paths. On the top level,
a task planner needs to generate tasks in order to fulfill
the mission goal. For example, the task planner should
compute goal point coordinates for the navigation layer
and adjust behavioral parameters according to the robot’s
state. That means, if the robot is carrying heavy loads, the
task planner is in charge of adjusting the path planning pa-
rameters so that the navigation layer generates only easy
paths. Furthermore, if the navigation layer reports that the
desired goal point cannot be reached, the task planner has
to choose a different goal point. A similar concept of a
gait control system and an autonomy and perception sys-
tem was used in the four-legged robot BigDog [14].

Figure 1: The DLR Crawler within the gravel testbed

In this paper we present the recent progress in the de-
velopment of the DLR Crawler (Fig. 1) - a six-legged
walking robot prototype with a walking layer employing
a biologically inspired gait and a navigation layer, which
enables the robot to autonomously find a path to a prede-
fined goal point. The paper is organized as follows. Sec-
tion 2 gives a system overview and describes the hardware
and control of the DLR Crawler. In section 3 the imple-
mented walking algorithms are explained and section 4

i-SAIRAS 2010
August 29-September 1, 2010, Sapporo, Japan



171

presents the stereo vision based navigation algorithm. Ex-
perimental results are evaluated and discussed in section
5 and comments on future work are given in section 6.

2 System Overview

The DLR Crawler is a prototypic, six-legged, actively
compliant walking robot that is based on the fingers of
DLR Hand II. It is a study for future exploration robots
that is intended to be used as laboratory testbed for the de-
velopment of gait and navigation algorithms. Following, a
brief overview of the hardware and the control algorithm
is given while a detailed description can be found in [7].

2.1 Hardware

The DLR Crawler has six equal legs with a length
of 155 mm each, a total mass of 3.5 kg and is able to
carry a payload equal to its own mass. It is symmetric
to its longitudinal axis and its feet span an area of 350
mm x 380 mm in a common configuration while its body
stands within 10 mm and 120 mm above ground. Each leg
has four joints and three active degrees of freedom (DOF).
Two DOF are realized within the differential base joint
while the third DOF results from the mechanical coupling
of the medial and the distal joint. All joints are driven
by permanent magnet synchronous motors in combination
with harmonic drive gears and a tooth belt transmission.

The Crawler hosts a variety of proprioceptive sen-
sors. Within each joint these are, a motor angle sensor,
a link side joint angle sensor as well as a joint torque sen-
sor. Additionally, each foot hosts a 6 DOF force-torque
sensor and the body implements an inertial measurement
unit (IMU). For the purpose of visual odometry and vision
based navigation a stereo camera head is mounted.

Figure 2: System setup of the DLR Crawler

Since the robot is a laboratory testbed, all control
computation is done externally on a QNX realtime PC
while the vision employs an external Linux computer (Fig.
2). This allows to quickly test different algorithms with
varying computational complexity without caring about
optimized implementation on specific on-board hardware
at this stage. A 1 kHz control cycle is guaranteed by em-
ploying a fast IEEE 1355 based hierarchical serial com-

munication system that uses FPGA nodes to collect and
transmit all sensor data and control commands. Further,
the robot has an external 24 V power supply and on-board
power distribution.

2.2 Control

For joint control, the DLR Crawler employs an ac-
tive joint compliance control algorithm. This algorithm
acts like a virtual spring-damper system within the joint
and, thus, allows to change the joint stiffness by means of
control. On the upper level the control algorithm is sim-
ilar to a PD control on joint position and velocity. But
on the lower level it additionally implements a high gain
joint torque control with friction compensation using the
link side joint torque measurements. To initiate the mo-
tion of a joint its virtual equilibrium is shifted and, de-
pending on the stiffness settings and the loading condi-
tions of the Crawler, the joints will follow. The advantage
of this control approach is its robustness allowing some
deviation from the desired trajectory and reducing inter-
nal forces due to modeling errors. Using the large set of
force-torque sensors, also Cartesian impedance control al-
gorithms can be implemented on either leg or body level.
Thus, in future, with a tool attached, a limb or even the
body could be used as force controlled manipulator.

3 Walking Algorithm

To operate in various unknown environments a walk-
ing robot should only rely on information gained by its
own proprioceptive sensors as well as its cameras. Since
there is neither complete knowledge of the terrain nor the
chance to foresee each possible situation the robot might
encounter, a gait algorithm needs to be very flexible, adap-
tive and robust. Furthermore, it needs to ensure the robot’s
stability at all times. In order to achieve these goals of
flexibility, stability and robustness, a variable gait coordi-
nation needs to interact with a multitude of local leg and
joint reflexes. This interaction should generate the appro-
priate behavior to autonomously handle slopes and steps
as well as obstacles and holes within the walking height.
One goal of the gait algorithm is to reduce the load of the
navigation layer that should only deal with large obstacles
and a general terrain assessment but should not care about
foothold and step planning during normal operation. A
footstep and pose planner should only be invoked by the
navigation layer in very challenging terrain that cannot be
handled by a reactive gait.

Since not all terrain is challenging, two different gait
algorithms are implemented on the Crawler that differ in
their capability but also in their computational complex-
ity. The first gait is a tripod for moderate terrain with an
underlying fixed coordination pattern requiring little com-
putational power. The second gait, based on a biologi-
cally inspired, variable coordination and multiple reflexes,
is more complex but allows to handle more challenging
terrain and is even able to handle leg loss. The following
sections will explain the gait algorithms. A more detailed



172

description can be found in [8].

3.1 Tripod

The tripod gait is the fastest gait observed on insects
in nature. The main characteristic of this gait is that the
front and hind leg on one side as well as the middle leg
on the other side perform a step at the same time. The
three remaining legs in ground contact form a stable tri-
pod and push the body forward. Thus, all legs follow a
fixed coordination pattern. The tripod implementation of
the Crawler allows the robot to walk either forward, back-
ward, sideways or to turn on the spot and to switch in be-
tween these at a central posture. The foot trajectories are
calculated with respect to a body fixed frame using fourth
order polynomials to allow smooth swing-stance transi-
tions. They are normalized and stored in look-up tables
allowing to vary speed, step height and step length. Using
the tripod gait, the posture can be varied simultaneously
and a stretch reflex, explained in section 3.3, can be used.

3.2 Biologically Inspired Gait

The biologically inspired gait of the DLR Crawler
is centered around inter-leg coordination mechanisms
that biologists derived from stick insect experiments [3].
These mechanisms, shown in Fig. 3, act in between neigh-
bored legs and excite or inhibit steps depending on the
states of the legs. Mechanism 1 is directed towards the
front of the Crawler and inhibits the start of the return
stroke of a leg as long as the posterior leg performs a re-
turn stroke. Mechanism 2 also acts towards the front of
the Crawler and additionally couples contralateral legs. It
excites the return stroke of a leg for a certain time after
a posterior leg finished its return stroke. Mechanism 3 is
directed towards the rear of the Crawler and also couples
contralateral legs. This mechanism excites the start of a
return stroke of a leg with increasing strength the closer
an anterior leg approaches its posterior extreme position
(PEP). All mechanisms alter this PEP of a leg, which
is the transition from power to return stroke. Thus, the
power stroke of a leg can either be extended or shortened
depending on the states of its neighbors. In our imple-
mentation the PEP can be imagined as a dynamically ex-
tending or shrinking cylinder centered in the Cartesian leg
workspace, within which the leg can move freely during
power stroke according to a desired body motion. Once it
leaves the cylinder, it has to initiate a step. By this a co-
ordinated gait emerges depending on the commanded ve-
locity and walking direction. With increasing velocity this
gait moves from just one leg stepping at a time via a tetra-
pod towards a tripod gait. Employing this coordination, it
is possible to walk along continuously curved paths since
forward and sideways walking as well as turning can be
combined to any desired motion. The algorithm will de-
cide itself at which time each leg needs to step. Important
to the gait is that all legs step at an equally high velocity
which poses a limit to the achievable walking speed. One
interesting feature of the gait is its adaptability to leg loss
scenarios as can be seen in Fig. 4. As soon as a leg is dam-

aged or lost completely it is removed from the coordina-
tion network and previously suppressed inter-leg connec-
tions are activated. This results in immediate adaptation to
the new situation and allows the Crawler to proceed with
only five or in some cases even four legs just at a reduced
speed. More details on this adaptability can be found in
[6]. One underlying assumption is that the damaged leg
does not remain in an outstretched locked configuration
obstructing the overall motion. This assumption is valid
since it is unlikely that all joints of a leg fail at the same
time and due to the fact that the joints are backdrivable.
Another nice feature of this algorithm is that it can easily
be extended towards eight-legged robots, which has been
shown in simulations. In addition to the stretch reflex used
with the fixed tripod pattern, the biologically inspired gait
allows to use the elevator and search reflexes described in
the following section.

(a) All mechanisms (b) Loss of L1

Figure 3: Inter-leg coordination mechanisms: solid ar-
rows - active, dashed arrows - suppressed

Figure 4: Emerging gait patterns in case of loss of the
left front leg (L1), left middle leg (L2) or left
hind leg (L3)

3.3 Reflexes

In order to autonomously and stably negotiate mid-
size obstacles and holes which are within the walking
height of the Crawler, reactive behaviors are needed.
These are different reflexes that adjust the posture of the
Crawler or react to collisions during stepping motions.

The first reflex of the Crawler is the above mentioned
stretch reflex. The purpose of this reflex is to enforce the
ground contact during the power stroke of a leg. If after a
step the leg does not hit ground at the anticipated height
or the leg looses ground contact due to a rolling stone, the



173

reflex gets activated and tries to find contact by quickly
extending the leg. It is triggered using torque thresholds
of the proximal and medial joints and is switched off if
the leg achieves a certain load or reaches some kinematic
limit. If no contact is found, the reflex shuts off and acti-
vates the search reflex.

The search reflex, currently only used in simulations,
is the second reflex, that tries to find a foothold by search-
ing at distinct locations within the workspace. If this re-
flex finds some contact and can successfully load the leg
then the robot can proceed. If the robot cannot find a
foothold some more advanced searching behavior has to
be activated that shifts the robot’s body in order to extend
the reach of the foot. If this is not successful, the nav-
igation layer needs to command the robot to reverse its
walking direction and to try to find a different path.

The third reflex is the elevator reflex that is triggered
once a stepping leg hits an obstacle. This reflex monitors
all joint torques and gets activated after some thresholds
are passed. In this case it retracts and raises the leg in or-
der to surpass the obstacle. If an obstacle is too high and a
leg reaches its kinematic limits trying to step over it then
the leg is retracted and placed on the ground in front of
the obstacle. In this case another behavior or the naviga-
tion algorithm must command the robot to walk into the
opposite direction to circumvent the obstacle.

These three reflexes in combination allow the Crawler
to autonomously negotiate most obstacles within its walk-
ing height and to adapt to rough and uneven terrain. It
also allows the robot to master transitions from flat to
sloped terrain or transition edges from upward to down-
ward slopes that require different leg extensions and ad-
justed body postures. The necessary adjustments are
solely achieved by the interplay of the reflexes without
active balancing based on IMU data.

Most of the reflexes require a flexible gait coordina-
tion since they lead to extended power stroke phases of
some legs or even cause the whole robot to stop if the situ-
ation cannot be resolved fast enough. Thus, all reflexes to-
gether with the biologically inspired gait give the Crawler
the highest capability to master rough terrain. Neverthe-
less, the use of the tripod pattern together with the stretch
reflex is also an interesting option for easy terrain due to
its achievable speed and low computational complexity.

4 Navigation Algorithm

Autonomous navigation requires a robot to continu-
ously estimate its current position in the environment and
to plan and follow a path to a predefined goal point. Un-
known unstructured terrain poses several challenges to
these tasks: First of all, the robot cannot rely on odom-
etry measurements because slip is very likely to occur.
Furthermore, the robot has to estimate the traversability
of the terrain which for rough terrain varies continuously
between easily traversable and untraversable. Finally, the
path planner must be able to cope with frequent map up-
dates and fuzzy obstacle descriptions. The navigation

layer of the DLR Crawler overcomes these problems. It
uses a stereo camera as primary sensor. Stereo cameras
are well suited for use in mobile robotic applications be-
cause they are light weight, passive sensors.

From each stereo image pair a depth image is com-
puted. Based on the depth image and on natural image
features, the position of the Crawler is estimated by visual
odometry. A terrain model is incrementally built from the
depth images and position data. This model is used to
estimate the traversability of the terrain according to the
robot’s abilities. A path planner computes optimal paths
based on the traversability map and sends motion com-
mands to the walking layer. The following sections will
explain the navigation algorithm in more detail. For fur-
ther information on the navigation algorithm refer to [2].

4.1 Computation of Depth Images

Until now, the computation of depth images was
done by a correlation based multiple-window approach
[11]. However, we have recently switched to Semi-Global
Matching (SGM), because this method is more accurate at
fine structures and object borders. Furthermore, the depth
images of SGM are denser, especially, in weakly textured
areas, which is helpful in the current application.

SGM [9] is based on the idea of pixel-wise matching,
supported by a global cost function. The matching cost is
computed either byMutual Information or Census [12] for
robustness against radiometric differences, which are un-
avoidable in practice. The cost function is optimized path-
wise from eight directions, symmetrically through the im-
age. This can be computed efficiently. Furthermore, the
basic algorithm is very regular and only contains simple
operations like comparisons and additions. This allows an
implementation on the CPU using vector commands for
speeding up computation. However, SGM is also quite
suitable for an FPGA implementation [5], which is very
attractive for mobile systems.

At the moment, the SGM implementation on the
Crawler is based on the graphics card [4], because the
Crawler prototype is currently connected via cable to a
standard desktop computer. The implementation com-
putes almost 5 frames per second in VGA resolution with
a large disparity range of 128 pixels. Much higher frame
rates can be reached with reduced resolution or disparity
ranges. An FPGA processing solution is anticipated in fu-
ture, for fully autonomous robots.

4.2 Visual Odometry

The image of the left camera and the depth image are
used for computing the relative movement of the robot via
visual odometry. The method performs corner detection
using Harris corners in subsequent left images [10]. In
contrast to most other visual odometry methods, features
are not tracked. Instead, each corner of one image is com-
pared with all corners of the subsequent image. This al-
lows large movements, i.e. either fast movements or low
frame rates. The comparison of corners is done by Rank
correlation [15]. Thereafter, corners are reconstructed us-



174

ing the depth image of SGM. An outlier detection, based
on pairwise comparison of relative distances between two
points, selects only those correspondences that fulfill the
rigidity constraint, which is valid for static scenes. Small
dynamic objects are tolerated and ignored as noise.

The relative movement is computed with 6 DOF in
closed form as the transformation between the corre-
sponding point clouds P and C. Finally, a refinement opti-
mizes the transformation by minimizing the image based
reprojection error εi of all corners. The relative transfor-
mation between subsequent camera coordinate systems is
described by a rotation matrix Rr and a translation vector
Tr as

Pi = RrCi +Tr + εi. (1)

Summing up all relative movements gives the abso-
lute transformation R, T between the start camera coordi-
nate system and the current camera coordinate system.

The method is quite fast and would be able to compute
the visual odometry on a standard computer in frame rate
if the depth image was available at that rate. However,
since feature tracking is avoided, the method is also able
to work at low frame rates like in the current application.

An extension of the original method [10] computes
the relative movement not only to the previous image, but
independently to a list of n previous images. This results
in n new position estimates. A multi-modal median de-
cides which of the n estimates is the best one. The list of
n images is limited to a small number like 4-8 for mak-
ing the computation time predictable. The current image,
as well as the oldest image, from which a motion can be
computed to the current image, is always stored in the
list. Additionally, a heuristic adds dissimilar images in
between the newest and oldest, depending on their time
stamp and number of features for computing the motion
to the current image. This strategy reduces accumulative
errors to a minimum and increases robustness to failure of
visual odometry.

However, errors are still accumulated over time. To
prevent the calculated roll and pitch angles from drift-
ing, they can be fused with absolute roll and pitch angle
measurements from the IMU. This has been successfully
tested on a commercial wheeled robot but has not been
implemented for the DLR Crawler so far. The use of
IMU position information for overcoming erroneous vi-
sual odometry data in case of blurred images or bad light-
ing conditions is also subject to future work.

4.3 Terrain Modeling

A digital terrain model (DTM), which is incremen-
tally built from the depth images, was chosen as internal
map. The DTM represents the environment as a regu-
lar grid and each grid cell stores a single height value.
Although this model cannot be used to represent multi-
ple height values per grid cell, it is sufficient for many
applications where overhangs are rare, such as planetary
surface exploration. DTMs need only little storage space

in comparison to full 3D models and path planning algo-
rithms can be applied easily.

The first step of creating a DTM is the reconstruction
of the 3D coordinates PC of the image points in the cam-
era coordinate frame based on the depth image. Since the
error in the calculated distance of an object point from the
camera grows quadratically with the distance, only im-
age points with a disparity value greater than a threshold
pdthresh are considered for map creation. The threshold is
chosen according to the map resolution so that a disparity
error of one pixel causes a maximal distance error of the
size Δl of a grid cell as

pdthresh ≈
�

f ·b
Δl

, (2)

where f is the focal length in pixels and b is the baseline
width of the stereo camera pair. For the Crawler, the map
resolution was set to Δl = 20 mm, resulting in a disparity
threshold of pdthresh = 31 px which corresponds to a cam-
era range of about 600 mm.

Knowing the rotation RWC and the translation TWC be-
tween the camera coordinate frame and the world coordi-
nate frame, the 3D coordinates PW of the image points in
the world coordinate frame can be computed as

PW = RWC ·PC +TWC. (3)

Of all points with equal PW
x ,PW

y coordinates, only the
points with the highest PW

z values are stored. The result-
ing height value for each grid cell is computed as the mean
of all PW

z coordinates whose x,y coordinates are located in
that grid cell. Using this method, a local map is created
from each depth image (ref. Fig. 5).

(a) Left image (b) Depth image

(c) Point cloud (d) Local map (DTM)

Figure 5: Local map creation from a stereo image

Each local map created from a depth image is attached
to the global DTM using the estimated robot pose at the
time of image acquisition. This approach is prone to er-
rors from visual odometry, which can cause artifacts in
the DTM. However, these errors remain small for small



175

scale maps and can be considered in the traversability es-
timation process by taking the time into account when the
height value was inserted into the global map [2].

4.4 Traversability Estimation

For path planning, the traversability of the global
DTM must be estimated according to the robot’s abili-
ties. In rough terrain it is beneficial to not only classify
the terrain in obstacles and free space but to assign contin-
uous traversability values to each part of the terrain. Dur-
ing traversability estimation a danger value is assigned to
each grid cell. The danger value of a cell is a measure
of how difficult it is for the robot centered on that cell to
traverse the terrain in any direction, which means, how
much safety risks the robot is exposed to and how much
energy is required for the movement. By doing so, the
robot could be able to choose paths according to internal
states, e.g. prefer a difficult shortcut over a safe and easy
detour if time critical tasks have to be fulfilled.

(a) DTM (b) Danger value

(c) Slope (d) Roughness (e) Step height

Figure 6: Danger value computation from the criteria
slope, roughness and step height

Completely flat and smooth terrain is assumed to have
a danger value of d = 0 because it is traversable for a robot
with minimal energy costs and minimal safety risk. A grid
cell is untraversable if the robot is exposed to hazards such
as collisions or tilt over. The navigation algorithm calcu-
lates the danger value of a grid cell from the three criteria
slope s, roughness r and step height h. Slope and rough-
ness of a cell are computed by fitting a plane to a circular
terrain patch of the size of the maximal robot diameter
(600 mm for the Crawler) around that cell. The slope is
calculated as the angle between the z-axis of the world co-
ordinate system and the normal vector of the plane. The
roughness is computed as the standard deviation of the
terrain points from the plane. The step height is com-
puted from local height differences of terrain points within
the maximal robot diameter. Cells are untraversable if
one of the three criteria exceeds a corrsponding critical
value scrit , rcrit or hcrit , which are chosen according to the
robot’s abilities. For the Crawler, values of scrit = 20◦,
rcrit = 30 mm and hcrit = 70 mm are used. Untraversable
cells are assigned a danger value of d = ∞. If all three
criteria are below the critical values, a danger value of the

grid cell between 0 and 1 is computed as

d = α1
s

scrit
+α2

r
rcrit

+α3
h

hcrit
, (4)

where α1, α2 and α3 are weight parameters which sum up
to 1. Fig. 6 shows a DTM with assigned danger values
computed from the three criteria. A danger value for a
grid cell is only computed if there is sufficient information
about the surrounding terrain.

4.5 Path Planning

Based on the DTM and assigned danger values, an
optimal path to the goal point can be planned. Since the
robot’s knowledge of the environment changes over time,
the path planner must be able to replan paths efficiently.
Thus, a D* Lite [13] path planner was chosen, which ba-
sically works like an A* graph based planner, but allows
efficient replanning by locally modifying the results of the
previous path planning step. As A*, D* Lite finds the min-
imum cost path to a goal vertex in a graph by first search-
ing those vertexes which most likely lead to the goal point.
For the path planner, the grid map is treated as a graph
where the grid cells are the vertexes and the edges connect
vertexes which refer to adjacent grid cells. The design
of the cost function c(N,N�) of moving between two grid
cells N and N� defines the optimality of the path. Since the
path planner should take the terrain traversability into ac-
count, the cost function was defined as the weighted sum
of distance and danger value:

c(N,N�) =
�

(Nx −N�
x)2 +(Ny −N�

y)2 +β ·d(N�), (5)

where d(N�) is the danger value of the target grid cell and
β is the weighting factor. For small values of β , the path
planner plans short and possibly more difficult paths, for
larger values of β longer but safer paths are planned. The
costs of moving to an untraversable cell are ∞.

From the definition of the cost function follows ap-
proximately that paths are planned which are β times
longer than the shortest path, if their average danger value
is less than 1

β of the danger of the shortest path. That
means, that only the relation between path length and path
safety is considered but not the absolute danger value of
a path. Therefore, the path planner additionally allows to
define a danger value threshold 0 ≤ dmax ≤ 1. If the dan-
ger value of a cell is higher than dmax, the cost of moving
to that cell is set to ∞. Thus, the safety of the planned path
can be improved without the need of changing parameters
in the traversability estimation process. This is beneficial
if the robot should avoid difficult areas for some reason,
no matter how long the detour would be, e.g., if the robot
has to carry heavy loads or if the robot’s hardware is dam-
aged. Currently, this threshold is set by the operator, but
in future a high-level task planner should be in charge of
adjusting this value.

4.6 Path Following

The planned path is followed by sending the simple
motion commands “move forward”, “turn left” and “turn



176

(a) Testbed setup (b) Map and paths for dmax = 0.2 (c) Map and paths for dmax = 1

Figure 7: Test of the navigation algorithm with different danger value thresholds dmax

right” to the walking layer. Furthermore, the gait pattern
can be chosen. Thus, in easy, smooth terrain the robot can
use the simple and fast tripod gait, and in rough and more
difficult terrain the gait can be switched to the computa-
tionally more expensive biologically inspired gait with el-
evation reflexes for overcoming higher obstacles.

5 Experimental Results

Different experimental setups were created to test the
interaction between the walking layer and the navigation
layer. An external tracking system was used to track a tar-
get body mounted on the Crawler, which provided ground
truth measurements in comparison to estimated positions
by visual odometry.

A first experiment should show the effects of differ-
ent danger value thresholds dmax on the planned paths.
The robot was given a goal point located at 1.20 m ahead
of its starting position. The direct path to the goal point
lead through difficult terrain. An easier but significantly
longer path existed to the right of the Crawler. The testbed
setup is depicted in Fig. 7(a). For the first run, the dan-
ger value threshold of the path planner was set to a low
value of dmax = 0.2. Using this threshold, all paths lead-
ing through grid cells with a danger higher than 0.2 are
marked as blocked by the path planner. Hence, the direct
path to the goal was avoided and the Crawler chose the
longer but safer path to the goal point. Figure 7(b) shows
the resulting navigation map as well as the planned path,
the true path and the path estimated by visual odometry.
The error of the visual odometry estimate is 4.0 cm at the
goal point.

For the second run, the danger value threshold was
set to 1, which means, that only paths are marked as
blocked by the path planner which contain untraversable
cells. Hence, the Crawler chose the direct but difficult
path to the goal point. The resulting map and the paths are
shown in Fig. 7(c). Since the robot had to traverse difficult
terrain, the navigation layer switched the gait pattern. The
easy areas were traversed via the simple tripod gait. At
point A the gait pattern was switched to the biologically
inspired gait with reflexes to overcome higher bumps. Af-
ter traversing the difficult area, the tripod gait was chosen
at point B to walk to the goal point. At the goal point, the

error of the visual odometry was 5.5 cm compared to the
true position.

A second test environment was built of several ramps
of different slopes. The Crawler is not able to traverse the
transitions between the different slopes using the tripod
gait. Thus, the gait pattern had to be switched to the bio-
logically inspired gait at the transitions. Fig. 8 shows the
test environment and the navigation map. The weight pa-
rameters for calculating the danger value (ref. Eq. 4) were
chosen so that terrain roughness had a higher influence on
the danger value than terrain slope and step height. Thus,
the difficulty of the transitions was estimated higher than
the difficulties of the slopes. The elevation profile of the
true path is shown in Fig. 8(c). The colors indicate the
used gait pattern. As can be seen, the gait switched to the
biologically inspired gait for crossing the transitions and
to the tripod gait for traversing the slopes and the flat parts
of the terrain.

6 Conclusions and Future Work

This paper provides an overview of the work on the
DLR Crawler towards the future goal of an autonomous
walking robot for planetary exploration. For this purpose,
the hardware setup, different gait coordination methods
incorporating reflexes as well as a stereo vision based
navigation algorithm have been presented. It has been
shown in experiments that the Crawler is able to navi-
gate in unknown terrain only using its on-board sensors
and the capabilities inherent to its walking and navigation
layer. Further, a first approach to influence the navigation
towards taking a shorter, more difficult path on the one
hand or a longer, safer path on the other hand depending
on the robot’s state or mission goal has been presented and
demonstrated experimentally. Additionally, a preliminary
adaptation of the gait based on the terrain assessment has
been shown.

In order to be completely autonomous many different
problems still have to be solved. First, a two-way data
exchange between the walking and the navigation layer
has to be implemented to provide both layers with envi-
ronmental information gained by the large set of sensors.
These information could be pre-filtered by the data col-
lecting layer and contain additional information about the



177

(a) Test environment (b) Navigation map

(c) True path and gait patterns

Figure 8: Test of the gait switching behavior

effort of a layer negotiating various situations. Thus, an
adaptation of the interplay of the layers should lead to-
wards more efficient solutions. Further, a planner has to
be implemented that plans footholds and body poses to
handle very difficult terrain. Additionally, some mission
planning capability has to be provided. On the hardware
side a more robust, highly integrated robot has to be de-
veloped that is power and computation autonomous. It
should allow to try out uncertain paths and should be able
to recover from falls, using this experience of difficulties
to adapt parameters of its walking and navigation layer
following the concept "learning by doing".

References

[1] R. Brooks, “A robust layered control system for a
mobile robot”, IEEE journal of robotics and automa-
tion, 2(1), (1986), pp. 14–23.

[2] A. Chilian and H. Hirschmüller, “Stereo Camera
Based Navigation of Mobile Robots on Rough Ter-
rain”, in IROS, International Conference on Intelli-
gent Robots and Systems, 2009, pp. 4571–4576.

[3] H. Cruse, “What Mechanisms Coordinate Leg
Movement in Walking Arthropods”, Trends in Neu-
roscience, 13, (1990), pp. 15–21.

[4] I. Ernst and H. Hirschmüller, “Mutual Information
based Semi-Global Stereo Matching on the GPU”,
in International Symposium on Visual Computing
(ISVC08), volume LNCS 5358, Part 1, Las Vegas,
NV, USA, 2008, pp. 228–239.

[5] S. Gehrig, F. Eberli, and T. Meyer, “A Real-
Time Low-Power Stereo Vision Engine Using Semi-
Global Matching”, in International Conference on
Computer Vision Systems (ICVS), volume LNCS
5815, Liege, Belgium, 2009, pp. 134–143.

[6] M. Görner and G. Hirzinger, “Analysis and Evalua-
tion of the Stability of a Biologically Inspired, Leg
Loss Tolerant Gait for Six- and Eight-Legged Walk-
ing Robots”, in IEEE 2010 International Conference
on Robotics and Automation, 2010, pp. 1525 – 1531.

[7] M. Görner, T. Wimböck, A. Baumann, M. Fuchs,
T. Bahls, M. Grebenstein, C. Borst, J. Butterfass,

and G. Hirzinger, “The DLR-Crawler: A Testbed for
Actively Compliant Hexapod Walking Based on the
Fingers of DLR-Hand II”, in IEEE/RSJ 2008 Inter-
national Conference on Intelligent Robots and Sys-
tems, 2008, pp. 1525 – 1531.

[8] M. Görner, T. Wimböck, and G. Hirzinger, “The
DLR Crawler: evaluation of gaits and control of an
actively compliant six-legged walking robot”, Indus-
trial Robot: An International Journal, 36(4), (2009),
pp. 344–351.

[9] H. Hirschmüller, “Stereo Processing by Semi-Global
Matching and Mutual Information”, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
30(2), (2008), pp. 328–341.

[10] H. Hirschmüller, P. R. Innocent, and J. M. Garibaldi,
“Fast, Unconstrained Camera Motion Estimation
from Stereo without Tracking and Robust Statistics”,
in Proceedings of the 7th International Conference
on Control, Automation, Robotics and Vision, Sin-
gapore, 2002, pp. 1099–1104.

[11] H. Hirschmüller, P. R. Innocent, and J. M. Garibaldi,
“Real-Time Correlation-Based Stereo Vision with
Reduced Border Errors”, International Journal of
Computer Vision, 47(1/2/3), (2002), pp. 229–246.

[12] H. Hirschmüller and D. Scharstein, “Evaluation of
Stereo Matching Costs on Images with Radiometric
Differences”, IEEE Transactions on Pattern Analysis
and Machine Intelligence, 31(9), (2009), pp. 1582–
1599.

[13] S. Koenig and M. Likhachev, “Improved fast re-
planning for robot navigation in unknown terrain”,
in Proceedings of the International Conference on
Robotics and Automation, 2002, pp. 968–975.

[14] D. Wooden, M. Malchano, K. Blankespoor,
A. Howard, A. Rizzi, and M. Raibert, “Autonomous
Navigation for BigDog”, in Proc. of the IEEE In-
ternational Conference on Robotics and Automation,
2010.

[15] R. Zabih and J. Woodfill, “Non-parametric local
transforms for computing visual correspondance”, in
Proceedings of the European Conference of Com-
puter Vision, Stockholm, 1994, pp. 151–158.


	Back

