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Abstract 
We present a framework for use of computer vision 

technologies to localize a spacecraft during small body 
(comets and asteroids) proximity operations. Our 
approach is to first detect image-based landmarks at 
stand-off distance during a mission survey phase, then 
catalog these landmarks into an easily referenced 
database, and finally use the cataloged data to recognize 
the landmarks during proximity operations. The catalog 
includes 3D body relative coordinates for the landmarks, 
so that image derived bearing angles to the landmarks 
enable localization of the spacecraft.  

In this paper, we describe our method of landmark 
detection and recognition, the details of the landmark 
catalog including estimation of 3D body-relative 
landmark locations, and our approach to vision-based 
estimation of spacecraft pose (position and attitude). We 
validate our research using real data from the JAXA 
MUSES-C mission and the NASA Deep Impact and 
NEAR missions as well as through detailed simulations.  

1 Introduction  

Any mission, such as sample return, requiring 
operations in close proximity to a small body demands a 
high degree of autonomy. This imposes a requirement for 
precise in-situ spacecraft localization with respect to the 
target body. A vision sensor provides a low cost, low 
weight, low power, flight proven solution. We present a 
suite of computer vision technologies to enable 
vision-based spacecraft localization.  

Our operational scenario is a mission with one or 
more survey phases at a stand-off distance from the 
target body. During this stage, we detect a set of 
landmarks specifically chosen to be recognizable at 
subsequent stages of the mission. For this research we 
use a variant of the Scale Invariant Feature Transform 
(SIFT) [7]. SIFT detects highly salient points in the 
image and associates to each a descriptor based on local 
gradient data. These points are our landmarks. The 
descriptor is used to recognize previously detected 
landmarks when encountered again. The descriptors are 
highly invariant to image scale change and in-plane 
rotation, thus accommodating changes in spacecraft 
location and attitude relative to the target body. 
Illumination invariance is achieved through a 
combination of image processing techniques and 

incorporation of sun angle. Details of the landmark 
detection and recognition are given in Section 2.1.  

During the survey phase, detected landmarks are 
tracked across multiple image frames using image 
correlation techniques. These tracks are use to generate 
3D locations for the landmarks in a body-centric 
coordinate frame using a least-squares optimization 
approach commonly referred to as Bundle Adjustment. 
The landmarks are cataloged by descriptor, 3D location 
and other contextual information. The catalog is 
designed for robustness, a high degree of discriminability 
between landmarks, and ease of search. Details of the 
catalog generation process are given in Section 2.2. 
While the BA process produces very accurate spacecraft 
pose and landmark positions, it is a computationally 
expensive, strictly batch process. Thus, it is ideal for 
generating the landmark catalog from stand-off distances 
but not for proximity operations, which require fast 
computation. 

During proximity operations, landmarks are detected
and their descriptors compared to those recorded in the 
catalog. The combination of image coordinates and 
previously extracted 3D catalog locations allows for a 
complete body-relative 6 DoF solution for the pose of the 
spacecraft [3][8]. Note that in an actual mission, the 
2D-3D correspondence between image coordinates and 
3D locations would be incorporated directly into the 
navigation filter rather than through an intermediate, 
purely vision-based pose solution. However, the 
vision-based pose is still critical as both a sanity check 
on the filter and as an outlier rejection mechanism for 
catalog match errors prior to handing off data to the filter. 
In this paper, we focus on the vision derived pose only. A 
description of how the vision products can be 
incorporated into a navigation filter is given in [4].  

We begin with an overview of the vision 
technologies used. We then show results on both real and 
synthetic data to validate the utility of this approach.  

2 Algorithm Overview  

  We now describe the vision algorithms developed and 
used for this research.  

2.1 Landmark Detection and Recognition  

While our overall approach is agnostic to the choice of 
landmark type, we chose SIFT as a starting point because 
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of prior success in the vision literature and its inherent 
scale and rotation invariance. A detailed overview of the 
base algorithm is beyond the scope of this paper but can 
be found in [7]. In brief, SIFT selects keypoints based on 
response to an approximation of the Laplacian of 
Gaussian (LoG) filter applied to a scale-space 
representation of an image. Here, scale-space refers to a 
pyramid-like hierarchy consisting of multiple copies of 
the image, successively downsampled and convolved 
with a series of spatial band-pass filters. Points with local 
maximum response across both the spatial and scale 
directions are chosen as landmarks. Thus, the resulting 
landmarks are not only optimally localized in the image 
but chosen at the most optimal scale. When viewed from 
a different distance, a given landmark will have a 
different size in the image but will be processed at a 
scale consistent with the prior view. Note that while 
landmarks are distinctive from an image processing 
standpoint, they may not correspond to obviously 
recognizable topographic features.  

Landmarks are identified via a descriptor consisting of 
local gradient data. For each landmark, a series of 
oriented gradient histograms is computed in windows 
surround the landmark center. These are concatenated 
into a single 128 element vector that serves as the 
landmarks descriptor. Matching of two landmarks is 
accomplished by computing the Euclidean distance 
between their descriptors. The histograms are computed 
only at the optimal image scale. Hence, the descriptor 
formulation is inherently scale invariant. Prior to 
descriptor computation, the region around each landmark 
is rotated so that the dominant gradient direction is up, 
thus providing rotation invariance in the image plane. 
Further, the use of multiple windows for computation of 
gradient histograms instead of a single large window 
affords some degree of shift invariance.  

Figure 1 shows a landmark detection and matching 
result for two images of asteroid Eros acquired during 
the NASA Near Earth Asteroid Rendezvous (NEAR) 
mission. 
 

Figure 1: Detection and recognition of landmarks 
from images of two different orbits of Eros taken by 

the NEAR spacecraft. 

The images are from different orbits and no 
frame-to-frame tracking is involved in obtaining 
landmark correspondences. Rather, this is a process in 

which previously observed landmarks are reacquired and 
recognized via their descriptors. Hence, we are treating 
landmark matching as a recognition problem rather than 
as a tracking problem. 

The work presented in this paper used our own variant 
implementation of SIFT, which diverges from [7] in 
some of the finer points including the details of the 
scale-space construction and some image pre-processing. 

While SIFT has been highly successful in general 
settings, we found that some modifications were required 
for the high contrast and sharp illumination transitions 
typical of space based imagery of small bodies. When 
used directly, there were too many local maxima in the 
LoG response, resulting in unstable landmarks. We 
experimented with various spatial image filters to 
improve response. If I(x,y) is the intensity of the image at 
pixel location (x,y), then we are interested in filters of the 
type 

),(*),(),(ˆ yxIByxIyxI −=          (1) 

where B is an operator approximating a spatial low-pass 
filter. Thus, the resulting Î is an approximation of a 
high-pass filtered version of I.  

Figure 2: SIFT landmarks from raw image (left), 
high-pass (center), and bilateral high-pass (left).

Figure 2 shows SIFT features on a raw image of Eros 
(left) as well as using two different choices of B. The 
first is convolution with an averaging kernel (center) and 
the second is the bilateral filter (right). While both 
high-pass filter operations produced more stable 
landmarks with a higher likelihood of recognition in later 
imagery, the bilateral high-pass [2] had the most 
dramatic improvement over the widest collection of 
datasets, both real and synthetic. Subjectively, one 
observes that the number of landmarks returned after 
bilateral processing on the right side of Figure 2 is 
smaller than for the other two cases. These fewer 
landmarks, however, are better candidates for recognition 
in later imagery.  

Scale invariance in SIFT is a function of image 
resolution and the errors introduced in downsampling 
during scale-space construction, but it is generally 
restricted to a factor of 2 or 3. For a mission using both a 
wide and narrow angle camera and multiple 
staging/survey phases, we find that it is possible to 
extend this scale invariance to a factor of well over 10 in 
a boot-strap fashion by associating descriptors across 
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discrete steps. This data association can be incorporated 
directly into the landmark catalog by assigning the same 
landmark identification to descriptors derived at various 
distances. In Figure 3 we show an example of this sort of 
descriptor chaining on imagery of asteroid Tempel 1 
acquired by the NASA Deep Impact mission. A specific 
landmark (center pixel of image 3.D) is chosen in the 
closest image and detected in the next closes (3.C) by 
descriptor matching. This is indicated by the overlay in 
3.G. This is chained together in pairwise fashion with 
increasingly distant imagery until the landmark can be 
localized at the most distant scale (3.H). The end result is 
an ability to match the given landmark across an image 
scale change of 17x, giving global context even at very 
close proximity to the surface.  

Figure 3: Chaining descriptors across scales to 
achieve invariance across wide change in distance. 

Above shows matching across 17x scale change.

The standard SIFT algorithm is especially well suited 
to detecting and recognizing features on flat surfaces. In 
the presence of high local surface relief, a likely scenario 
for a spacecraft near a small body, the matcher quickly 
breaks down. Our workaround is to extract landmarks 
only in areas that are relatively locally flat. We can 
compute local surface roughness either from binocular 
stereo on adjacent frames or from multi-baseline stereo 
using pose from the BA algorithm described in section 
2.2.  

Figure 4 shows a synthetic image (left), a stereo 
reconstruction (center) and the roughness map (right) 
derived from stereo. We threshold the roughness estimate 
to select landmarks only in flat areas likely to be 
recognizable from multiple viewpoints. In practice, we 
use a more sophisticated, highly efficient approach that 
reduces the problem of surface topography estimation to 
a 1-D line search in the neighborhood of a landmark [5].  

An additional enhancement to the basic SIFT 
framework is to incorporate information on body-relative 
location, sun angle and other metadata directly into the 

catalog. This restricts the search space for descriptor 
matching and eliminates many outliers. 

Figure 4: Synthetic image (left), stereo map (center), 
and roughness map (right). Roughness used to prune 

landmarks in unstable areas. 

2.2 Generating 3D Landmark Positions  
 

  Detected landmarks are tracked across adjacent frames. 
Since the imagery in question is closely grouped in time, 
viewpoint and illumination are similar. Hence, standard 
image correlation techniques are employed [10]. At least 
2 frames of tracking data are required to recover 3D. We 
also extract other cues such as surface normal and local 
roughness to better prune the most stable landmarks for 
subsequent detection.  

3D landmark locations are derived from bundle 
adjustment (BA), a technique for simultaneously refining 
the position of landmarks as well as the pose of all 
camera frames involved. The approach was originally 
conceived in the field of photogrammetry and has been 
used to analyze airborne photographic imagery for many 
years. Recently, BA has been increasingly used by vision 
researchers and has been widely recognized as one of the 
most reliable and accurate techniques for 3D scene 
reconstruction. Assume that n 3D points (aj, j = 1, 2, …n) 
are observed in m views (bi, i = 1, 2, … m) and let Xij be 
the observed projection of the i-th point on image j. 
Given the initial locations of these 3D points and the 
initial camera extrinsic parameters (i.e. pose data), these 
3D points can be reprojected to the m image planes 
following the known imaging geometry of the camera. 
Ideally, the reprojected image points should match 
exactly the landmark points observed in the images. In 
reality, due to numerous uncertainties such as 
initialization error and image noise, the reprojected 
points do not match the observed points. The main 
objective of BA is to minimize the reprojection error 
with respect to all 3D points and the camera’s extrinsic 
parameters, specifically 
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where Q(aj, bi) is the predicted projection of point i on 
image j and d(x, y) denotes the Euclidean distance 
between image point x and y.  
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   The BA method can be cast as a non-linear 
optimization problem. If the dimension of each aj and bi is 
κ and λ respectively, the total number of parameter in a 
BA system is mκ+nλ. This can result in a very large 
system. Fortunately, the lack of interaction among 
parameters for different 3D points and cameras in 
multiple views results in a very sparse Jacobian matrix 
with independent blocks. A sparse matrix manipulation 
technique, typically an iterative method, can be used to 
gain considerable computational speedup.  We used a
generic bundle adjustment based on a sparse 
implementation of the Levenberg-Marquardt algorithm 
by Lourakis and Argyros [11].  
   We use the first camera frame as the global coordinate 
system, and the rest of the imagery is referenced to this 
first frame. Once the 3D point cloud associated with the 
landmarks is computed, we transfer the results to a 
body-centric coordinate frame by centroiding on the 
landmarks.   For the very first pair of images, we use a 
linear closed form solution of Structure from Motion 
(SFM) to obtain the relative motion [9]. SMF is used only 
in the first pair of images. The rest of the image poses are 
determined initially by a pose estimation algorithm using 
[1][8]. BA proceeds iteratively across groups of frames. 
In summary, poses for new frames are established from 
known 3D landmark locations computed in previous BA 
steps. Then the 3D positions of fresh landmarks are 
determined by triangulation. Landmark position 
uncertainty is given by covariance analysis derived from 
the BA procedure [5]. 

Note that BA does not recover a global scale, since 
scale is inherently ambiguous in image data. However, in 
practice we can impose a scale constraint by using the 
navigation filter to determine the distance between the 
first two frames used for BA.  
  Once the spacecraft pose and landmark positions are 
determined, we use multi-baseline stereo methods [12] to 
determine the local topography surrounding each 
landmark. Then the landmark surface normal and 
roughness are estimated by using the extracted 
topography. 

2.3 Catalog Components 

In order to enable robust and efficient matching, the 
catalog entry for each landmark must be a 
comprehensive yet compact snapshot of its properties. 
We show in Table 1 the various components that make 
up a complete landmark database. 

The two key components here are the landmark 
position and descriptor. Under ideal conditions, these 
suffice to completely solve the spacecraft localization 
problem, since the descriptor is used for landmark 
recognition in subsequent images, and the pose is given 
by the 3D landmark positions and their corresponding 
2D image coordinates. However, several other 
considerations go into the catalog. For both efficient 

query and to minimize false matches, we consider only 
landmarks detected under similar viewpoint and sun 
angles (sensor and sun vector). Covariance estimates as 
well as normal and roughness data provide a confidence 
metric on a given landmark and can be used both in 
matching and directly by a state estimator in the case of 
the covariance. Finally, maintaining context (topography 
and tracks) is useful for both outlier rejection in the 
match process and whenever augmentation of the 
landmark catalog with new entries is desired, such as in a 
mission with a multi-stage survey phase.  

 
Table 1:  Components of Landmark (LM) Database 
LM 
parameters 

Description 

Position 3D position in body frame  

Descriptor SIFT (or other) descriptor 

Position 
covariance 

6 elements of symmetric 3x3 matrix 

Normal Unit vector in body frame indicating 
surface normal 

Roughness Variation in surface elevation 

Sensor vector Vector from body frame to sensor 

Sun vector Unit vector to sun in body frame 

Topography 8 3D points surrounding the landmark 

Landmark 
track 

Landmark image location in next three 
frames 

Landmark 
size 

Image scale of landmark (i.e. location 
in scale-space representation) 

2.4 Localization from Landmarks  
 

After the landmark catalog is generated during the 
mission survey phase, it is used during proximity 
operations to localize the spacecraft relative to the target 
body. Assume initially that descriptor matching suffices 
to provide an error-free correspondence between 
observed landmarks and their catalog entries. This means 
that we have a direct correspondence between 3D points, 
expressed in the coordinate frame of the small body, and 
their 2D image coordinates. This correspondence is 
sufficient in the general case to solve for the 6 DoF 
position and attitude of the camera in the small body 
frame. If the camera is fully calibrated, there exists a 
known function F, such that for any camera pose (R,T) in 
the small body coordinate frame and a 3D point w
expressed in the same frame, the corresponding image 
coordinate p is given by  

),,( wTRFp =                (3) 
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Let {wi} be a collection of 3D points corresponding to 
landmark catalog entries, and {pi} the corresponding 
image coordinates from a frame acquired in proximity of 
the small body. For a hypothetical camera pose (R’,T’)
let  

)),','(()',',,( iiii wTRFpNTRwpe −=    (4) 
be the associated image reprojection error, where N is an 
appropriately chosen norm. Solving for pose then 
amounts to finding 

∑=
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       (5) 

Details on the efficient solution to Eqn. (5) as well as 
studies on robustness and potential singularities can be 
found in [3][8].  

As mentioned previously, in a real mission scenario, 
the {wi, pi} correspondence data would be fed directly to 
the navigation filter. However, the pose solution from 
Eqn. (5) is critical as both a sanity check on the system 
and as an outlier rejection scheme for poor landmark 
matches or complete mismatches. In particular, the 
navigation filter can accommodate poor localization 
(larger covariance) but not outright match failures. 
Hence, we must eliminate these failures using only 
vision techniques.  

Observe that the reprojection error in Eqn. (4) gives a 
measure of consistency of a given point with the overall 
pose solution. A naïve outlier rejection scheme would be 
to threshold directly on the reprojection error. However, 
this ignores the fact that the pose solution is partially 
conditioned on any mismatches in the data. Our solution 
is to use the Random Sample Consensus (RANSAC) [6] 
framework for outlier rejection. Assume K total matches 
in the database. We outline the procedure below:  

• For m iterations: 
- Randomly select n landmarks matches from the K, 
where n << K, and solve for (R,T) in Eqn. (5) using 
only these matches 
- Compute the median error from Eqn. (4) over all K
points  
- If median error is smaller than previous smallest 
median error, save current (R, T) as best tentative 
model 

• Compute error for all K matches using best (R, T)
• Threshold to reject outliers 
• Recompute (R, T) using only inliers 

In the above, m is derived from a principled statistical 
argument [6] based on estimates of outlier probability 
and on requirements for algorithm correctness. Figure 5 
shows the outlier rejection mechanism in action on a 
synthetic scene. In this case, the three outliers (red) were 
intentionally introduced and automatically detected. 
  

Figure 5: Detected and recognized landmarks in 
green. Intentionally introduced outliers in red are 

found and rejected. 

3 Experimental Validation 

We have already shown some experimental results on 
matching (Figure 1 and Figure 5) and scale invariance 
(Figure 3) in the course of the algorithm description. In 
this section, we focus on two more detailed case studies. 
The first addresses localization accuracy using a 
synthetic object. The second focuses on both catalog 
generation and accuracy using a model of Itokawa as the 
target body.  

3.1 Localization: Twice around case study
We assemble the pieces of this research effort into an 

experiment called the “twice around” study. This 
combines landmark detection, a simplified version of 
catalog generation, and spacecraft localization from 
matched landmarks. The name refers to flying twice 
around a small body. In the first orbit, landmarks are 
detected and stored in a catalog along with descriptors 
and 3D locations. In the second orbit, landmarks are 
detected and matched via their descriptors to catalog 
entries. The recorded 3D landmark locations from the 
first orbit are used with image coordinates from the 
second orbit to localize the spacecraft using image based 
pose estimation. 

For this study, we adopt a simplified version of the 
landmark catalog that uses only 3D locations and 
descriptor data. Rather than using the full BA framework, 
this limited catalog uses trinocular stereo from triplets of 
neighboring frames to localize the landmarks.  

The target body is a purely synthetic object (See 
Figure 5) approximately 500m in diameter, and the 
spacecraft orbits at approximately 2km from its center of 
mass. Two hundred frames are used in the first orbit to 
generate a landmark catalog. During the second orbit, 70 
evenly spaced frames are used to evaluate localization 
against ground truth. Note that the two orbits are not 
identical and that the imaging positions change between 
the two passes.  

Landmark detection during the second orbit uses the 
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RANSAC approach described above for robustness. In 
Figure 6, we show one frame with landmarks that were 
matched to the catalog as well as the vision based pose 
estimate for the 70 frames of the second orbit. Black dots 
indicate the vision estimate of spacecraft position, while 
the green coordinate frames indicate ground truth. The 
cyan points show all entries in the landmark catalog.  

Figure 6: Twice around study showing matched 
landmarks (left) in one frame and vision-based pose 

estimate (right) over 70 frames of second orbit. 
 

Error covariance is computed in the camera frame 
rather than the body frame for consistency across images. 
We find that the 1σ error in the principal direction 
(nearly aligned with the optical axis of the camera) is 
5.7m or approximately 0.4% of the distance to the 
surface of the body. The absolute position error is 
bounded by 23m over the course of the second orbit and 
has an RMS value of 8m over all frames. Note that while 
good, these results are purely vision-based. Incorporation 
into a navigation filter is expected to improve them 
dramatically. 

3.2 Bundle Adjustment and Landmark Catalog: 
Twice down case study 

For this study, we use a shape model of asteroid 
Itokawa developed through the JAXA MUSES-C 
mission. Texture is added to the shape model, and virtual 
imagery is rendered from this data based on simulated 
spacecraft position and attitude.  

The virtual spacecraft captures imagery while 
performing the following maneuvers twice (hence the 
name of the study) with some random variation in 
trajectory: 
• Start at 300m above the target 
• Hover within circle of radius 30m  
• Descend to 150m  
• Hover within circle of radius 30m  

The first descent is used to generate a full catalog 
following sections 2.2 and 2.3. The second descent is 
used to validate localization from the catalog.  

After the first descent, the BA algorithm estimates 
spacecraft pose and 3D landmark locations. For each 

landmark, the input includes its pixel location in a base 
image as well as three successive images, and the size of 
the image patch corresponding to the landmark. With this 
information, its initial 3D positions can be estimated by 
the methods described in section 2.2. BA then makes use 
of every frame in which a given landmark is detected to 
reduce 3D location uncertainty. Surface topographic 
information is extracted from 3D data on the image patch 
and recorded in the landmark catalog. Figure 7 shows 
372 landmark patches (red faces) and corresponding 
surface normals (arrows). We find that some landmarks 
are in flatter regions than others. This information is used 
to select those landmarks best suited for descriptor based 
recognition in later imagery. Because BA cannot recover 
the scale directly from image data, we used the ground 
truth poses of the first two images in the sequence to 
constrain scale and propagate this to the rest of the 
sequence. In a real mission, this scale data would be 
provided by the navigation filter. 
 

Figure 7: Two views of the landmark topographies 
and surface normal (arrows in the center of each 

landmark) of 372 SIFT landmarks. 
 

Figure 8 shows the BA derived pose of the spacecraft 
for the first 40 images of the sequence. The RMS error in 
X, Y, and Z direction are 0.337,  0.373 and  0.391 
meters and the attitude errors in the X, Y, Z axes are 
0.00173,  0.00116, and 0.00130 radian respectively. 
Since there is no ground truth data on landmarks, which 
are purely image derived, we estimate landmark 
localization accuracy through Monte-Carlo simulation 
assuming the above errors for spacecraft pose accuracy. 
Given the nominal trajectory shown in Figure 8 and 
visibility of any landmark in 20 frames, we find through 
Monte-Carlo simulation that the triangulation error of the 
3D landmark positions is on the order of 0.5 m lateral (X 
and Y) and 0.7 m in depth (Z). This data can be 
incorporated directly into the navigation filter and can 
also be used by the pose estimation algorithm in section 
2.4 to derive an error covariance on the vision-based 
pose estimate 

It follows that BA can achieve sub-meter accuracy in 
both spacecraft pose determination and landmark 3D 
location estimation from an altitude of 300 meters.
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Figure 8: Spacecraft pose estimates on synthetic 
Itokawa data from BA (red) vs. ground truth (blue).
   
We overlaid the extracted landmarks and their local 

topographical properties directly on the Itokawa shape 
model in Figure 9. Visual inspection tells us the 
topographies of the landmark match the shape model 
well, lending further credence to the approach.  

We validate spacecraft localization using landmark 
matching to the catalog during the second descent. 
Unlike the limited catalog of the “twice around” study, 
we use the full catalog developed during the first descent 
toward the Itokawa model in the “twice down” study. 
Recall that the spacecraft trajectory during this second 
descent is similar but not identical to the first, hence the 
rendered imagery differs. While the catalog was 
generated only during the hover phases, matching and 
localization was performed throughout the trajectory, 

 
Figure 9: Extracted landmarks overlaid on Itokawa 

shape model indicating local surface properties. 
  
Results for localization accuracy are shown in Figure 

10. RMS errors at 300m were (ΔX, ΔY, ΔZ) = (3.56m, 
1.16m, 2.35m) while at 150m, they were (ΔX, ΔY, ΔZ) = 
(0.43m, 0.38m, 0.91m). While the landmark catalog is 
only computed at 300m and 150m, not during the 
intermediate descent, localization errors are well 
constrained throughout. The missing data in the middle 
of the descent is due to an image rendering error rather 
than to failure of landmark matching.  

Figure 10: Spacecraft pose estimation errors from 
twice down study 
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4 Conclusion 

We assumed a plausible two-stage scenario for a small 
body mission, with one or more stand-off survey phases 
and a final proximity phase. Given this scenario, we have 
shown that image based technologies provide a practical 
solution for spacecraft localization during the proximity 
phase. In conjunction with a navigation filter, our 
approach provides enough localization accuracy for 
targeting of specific sites on the body for sample return 
or other scientific exploration. 

Our approach was to detect distinctive landmarks 
during the survey phase whose identities could be 
efficient encoded with a unique descriptor based on 
image data. These landmarks are recorded in a catalog 
along with derived 3D locations and additional 
information to enhance recognition in the proximity 
phase. Once detected and recognized in the proximity 
phase, we use image-based pose estimation from 2D-3D 
correspondence to estimate the spacecraft position and 
attitude relative to the body. This solution can be used in 
its own right or as backup to a navigation filter that 
directly incorporates the 2D-3D correspondences. 

We showed through a series of experiments on 
synthetic and real data that our approach produces highly 
accurate landmark localization as well as good spacecraft 
pose, even in the absence of a navigation filter.  
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