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Abstract
We have developed an architecture called MUSE (Multi-

User Scheduling Environment) to enable the integration of multi-
objective evolutionary algorithms with existing domain planning 
and scheduling tools. Our approach is intended to make it  possi-
ble to re-use existing software, while obtaining the advantages of 
multi-objective optimization algorithms. This approach enables 
multiple participants to actively engage in the optimization proc-
ess, each representing one or more objectives in the optimization 
problem. As initial  applications, we apply our approach to sched-
uling the James Webb Space Telescope, where three objectives 
are modeled: minimizing wasted time, minimizing the number of 
observations that miss their last planning opportunity in a year, 
and minimizing the (vector) build up of angular momentum that 
would necessitate the use of mission critical propellant to dump 
the momentum. As a second application area, we model aspects 
of the Cassini science planning process, including the trade-off 
between collecting data (subject to onboard recorder capacity) 
and transmitting saved data to  Earth. A third mission application 
is that  of scheduling the Cluster 4-spacecraft  constellation plasma 
experiment. In this paper we describe our overall  architecture and 
our adaptations for these different application domains. We also 
describe our plans for applying this approach  to other science 
mission planning and scheduling problems in the future.

1 Introduction
Multi-objective scheduling is an approach to optimized 
scheduling that offers a number of advantages over the 
more conventional single-objective approach[1, 2]. By 
keeping objectives separate instead of combined, more 
information is explicitly available to the end user or to the 
scheduling software system for comprehending and decid-
ing on trade-offs among competing objectives. Multi-
objective algorithms produce a set of solutions, called a 
Pareto surface (aka trade-off space), where no solution is 
strictly dominated by another solution for all objectives. 
Particularly when objectives cannot be cast to commensu-
rate scales, visibility into the Pareto trade-off space can be 
extremely valuable for the decision maker. Algorithms for 
solving multi-objective problems have been developed that 
are effective in building up populations of candidate 
schedules that approximate the Pareto frontier with uni-
form sampling. However, adapting a multi-objective 

scheduling approach to an operational setting is faced with 
at least two signicant additional challenges: 
• the often high dimensionality of the objective space can 

be difcult to convey to users using conventional 
graphical user interfaces: this makes it difcult to see 
overall patterns and trade-offs, or to see the effects of 
limiting objective or constraint value ranges

• the nature of many multi-objective scheduling prob-
lems requires multiple users to be heavily involved, 
each such user contributing one or more objectives that 
reect their interest in the outcome of the scheduling 
process: thus there is a tightly integrated multi-user 
aspect that must be considered

We have applied a multi-objective scheduling approach to 
several space science missions that amply illustrate these 
challenges: the James Webb Space Telescope (JWST), the 
Cassini mission at Saturn, and the Cluster 4-spacecraft 
Wideband Data (WBD) plasma experiment. In this paper 
we describe the nature of some of the scheduling and user 
interface challenges that these kinds of missions present, 
and the techniques we are investigating to overcome them.

2 Approach
We have developed an architecture called MUSE (Multi-
User Scheduling Environment)  to integrate pre-existing 
scheduling components (e.g. scheduling engines and user 
interfaces) into a multi-objective multi-user scheduling 
framework. The MUSE architecture integrates both generic 
and application-specic components. Among the generic 
components is a means for visualizing objective value 
spaces for schedule populations, for registering objective 
limits and acceptable ranges, and for collaborative conver-
gence on mutually acceptable schedules for multiple users. 
Our approach to visualization includes a variety of tech-
niques to meet the challenges noted above of higher-
dimensional objective spaces, including 2- and 3-D projec-
tions of the Pareto frontier, histograms and other depictions 
of values in different dimensions, and attribute exploration 
techniques that have been successfully used in a number of 
data visualization applications. We have adapted elements 
common to mixed-initiative user interfaces that can be ap-
plied to our domain. The overall architecture and approach 
to visualization is described in Section 3, and its applica-Copyright © 2010, California Institute of Technology. Government spon-
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tion to three representative space science missions in Sec-
tion 4. We summarize our conclusions in Section 5.

3 Architecture
The MUSE architecture is illustrated in Figure 1. Several 
drivers have led to design decisions as they relate to the 
architecture:
• MUSE is intended to integrate with existing tools as 

easily as possible, to leverage existing work in many 
domains

• The collaborative elements of MUSE require persistent 
storage of various types of schedule data, hence a 
server-centric architecture

• Both online and ofine collaboration need to be sup-
ported, in consideration of users working across multi-
ple time zones — thus live interaction is available but 
not required

We distinguish server components (Figure 1 lower half) 
from those resident on the user’s workstation. We also dis-
tinguish generic components (left) from those that are gen-
erally very domain specic (right). The architecture is de-
signed so that domain specic components can be run as 
separate processes or can be compiled into the same image 
as the generic code.

We have adopted the familiar threaded email or news-
group interaction model as a metaphor for how MUSE 
interacts with individual participants. Such interaction can 
be either on- or ofine, in that one can tell upon returning 
to the interface what has changed since one was last pre-
sent. This is important in settings where participants may 
use the system in an infrequent episodic manner.

On the server side, the Multi-Participant Coordinator 
acts as a central “clearing house” for schedule data, par-

ticipant’s selections, and scheduling runs. It provides a 
REST-based web application interface that communicates 
with the individual participants, providing up to date 
schedules, schedule status, and other participants selections 
of objective value ranges. The Multi-Objective Scheduler 
is an implementation of an evolutionary algorithm[1, 2] to 
evolve a population of candidate schedules towards the 
Pareto-optimal surface. While various algorithms could be 
employed here, we are presently using a variant called 
Generalized Differential Evolution[3, 4]. More details 
about this algorithm and how it performs on some relevant 
domains may be found in [5]. The Application Map pro-
vides a transformation between decision variable values 
and domain-specic scheduling decisions as represented 
and evaluated in the Domain Scheduling Engine compo-
nents. The Multi-Objective Scheduler supports parallel 
evaluations of schedules, which can frequently help speed 
the generation of a Pareto surface for participants. 

The Domain Scheduling Engine is the application-
specic scheduling software that MUSE uses to evaluate 
candidate schedules. This evaluation utilizes the decision 
variable values, and can potentially perform internal con-
ict resolution or optimization steps on its own before re-
turning a set of objective function values to the Multi-
Objective Scheduler. These values are used by the evolu-
tionary algorithm to evolve the candidate population to-
wards a well-sampled Pareto surface.

Just as Domain Scheduling Engines can be highly appli-
cation specic, so are Domain Scheduling GUIs. These 
GUIs often already exist in many domains and are able to 
display and manipulate aspects of the scheduling problem 
that are not common from one domain to another. MUSE is 
intended to integrate with such GUIs, e.g. to invoke the 
GUI on one user-selected schedule for detailed examina-
tion and assessment.
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Figure 1. Architectural overview of the Multi-User Sched-
uling Environment (MUSE).
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Figure 2. Adaptation of MUSE for a specic domain, here 
illustrated by James Webb Space Telescope (JWST).
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A key function of the Participant Trade-Off GUI is visu-
alization of the objective space of the problem, in order to 
comprehend trade-offs and develop a solution acceptable to 
all participants. For 2- and 3-dimensional objective spaces, 
there exist commonly used techniques for visualization that 
can convey the selection possibilities of the candidate 
schedule population. However, as the dimensionality of the 
objective space increases, this becomes more and more 
challenging[6, 7]. We are investigating a number of tech-
niques in this context for displaying higher dimension ob-
jective spaces, including:
• parallel coordinate plots
• “brushed” histograms or scatter plots that indicate cor-

relations among attributes
• display of neighbors of selected points when projected 

to 1- or 2-D displays
• use of multi-touch displays for rapid and intuitive ma-

nipulations of selections and views
We expect that user preferences will play a crucial role in 
this area, and that a wide range of visualization options 
should be provided to accommodate the wide range of user 
preferences. We anticipate dening a “plug-in” mechanism 
so that it is easy to add additional visualization strategies as 
they become available.

A sample screen from a prototype Participant Trade-Off 
GUI is shown in Figure 3, in this case for the 3-objective 
JWST domain (described below). With the Participant 
Trade-Off GUI users can view a set of candidate schedules, 
select limit ranges on objective values, and see what other 
users have selected. They can examine trade-off opportuni-
ties objective by objective and update their selections, and 
see the overall intersection of acceptable ranges from all 
participants. The ultimate goal is the convergence of all 
participants to a single selected baseline schedule; should 

this not occur, MUSE does not preclude any specic proc-
ess from arbitrating differences and making a nal selec-
tion.

4 Applications
We have applied the architecture described above to three 
very different space mission applications, which we de-
scribe in the following subsections.

4.1 James Webb Space Telescope
The James Webb Space Telescope (JWST, Figure 4) will be 
the premier astronomical facility of the next decade, re-
placing two of the current Great Observatories, Hubble 
Space Telescope (HST) and Spitzer Space Telescope (SST) 
as a uniquely capable space-based observatory with highly 

Figure 3. A view of the prototype Participant Trade-Off GUI for a 3-objective domain (JWST).

Figure 4. Illustration of James Webb Space Telescope showing 
the segmented primary mirror and the very large sunshade.
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ambitious scientic objectives. Scheduled for launch in 
2014, JWST will have a 6.5m primary mirror diameter 
(compared to 0.85m for SST, and 2.4m for HST), and will 
primarily observe in the infrared (like SST, and in contrast 
to HST's primarily optical and UV sensitivity). 

Scheduling a mission such as JWST requires the balanc-
ing of many factors[8]. Clearly, such an expensive and 
unique facility must be utilized as efciently as possible, 
and minimizing any wasted time is a primary objective. At 
the same time, the lifetime of the observatory is limited by 
consumables such as propellant for reducing momentum 
build-up in the spacecraft's reaction wheels. Thus, optimi-
zation of the JWST schedule is determined by multiple 
simultaneous objectives, for which there is no well-dened 
trade-off mechanism that would permit denition of a sin-
gle combined objective. Multi-objective techniques that 
keep the objectives separate permit explicit visibility and 
management of the multiple trade-offs that are necessary to 
generate a balanced overall schedule for JWST.

For JWST, two of the primary objectives are minimizing 
schedule gaps, and minimizing the number of late observa-
tions, i.e. that miss their last scheduling opportunity. The 
more unusual objective is that of reducing angular momen-
tum build-up in the spacecraft reaction wheels, caused by a 
complex interaction of pointing direction, roll angle, and 
solar radiation pressure on the tennis court-sized sunshade. 
Angular momentum build-up must be compensated by 
ring spacecraft thrusters, which consumes scarce propel-
lant and thus is potentially a limiting factor on mission 
lifetime. The angular momentum resource constraint has 
several important features: it is a 3-dimensional vector ad-
ditive quantity that applies both as a hard constraint and as 
a preference. The contribution to angular momentum build-
up of any particular observation is a function of when it is 
scheduled and of the roll angle at which it is scheduled.

The adaptation of the generic MUSE architecture to 
JWST is illustrated in Figure 2. As the JWST domain 
scheduler we used Spike[9], implemented in Lisp. The 
MUSE infrastructure is implemented in Java with the 
JavaFX scripting language providing user interface func-
tionality. The two systems are integrated via a client-server 
socket interface that can be readily supported on both sides 
of the interface. This allows for the exchange of decision 
variable values from the multi-objective optimizer, and the 
receipt of objective values in return. Results from the ap-
plication of the multi-objective optimizer in this manner 
have been reported elsewhere[10, 11].

Figure 4 illustrates the Participant Trade-Off GUI oper-
ating in the JWST context, showing a display of the three 
objectives described above. This particular visualization 
shows a rank ordered plot of each objective value in the 
top three graphs, and the three 2-D projections in the bot-
tom three. All of the points are cross-linked, in that selec-
tion of any point in any of the graphs, or any row of the 
table, will highlight the selected point on all of the other 
graphical and tabular views. The selection of an objective 
value range (via the entry boxes, upper right)  highlights the 
selected subpopulation. In addition, the user can view other 

participant’s selections, and the overall intersection of all 
objective ranges. Finally, the user can publish their own 
selections to be available to other participants.

4.2 Cassini
As a second application area, we are modeling several as-
pects of the Cassini science planning process[12, 13], in-
cluding the trade-off between collecting data (subject to 
onboard recorder capacity) and transmitting saved data to 
Earth, which requires a maneuver to point the high-gain 
antenna to Earth. The choice of downlink timing and 
ground-based antenna size (70m vs. 34m) has a major im-
pact on how much data can be collected and transmitted, 
and propagates back to the different science teams in terms 
of which instruments are in use and in which modes. Thus, 
there is a natural framing as a multi-objective optimization 
problem.

The Cassini spacecraft (Figure 5) was launched in 1997 
and since 2004 has been in orbit around Saturn. Cassini is a 
3-axis stabilized spacecraft with 12 diverse science inves-
tigations, including 6 for optical and microwave remote 
sensing, and 6 for elds/particles/waves. The mission has 
been a spectacular success, with 260 scientists from 17 
countries participating in the scientic data analysis and 
follow-up. The spacecraft communicates to Earth primarily 
through a high-gain antenna that must be pointed at Earth, 
sending back of order one Gigabyte of science data per 
day.

Figure 5. The Cassini/Huygens spacecraft. The white-suited g-
ure at lower left shows the scale
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During downlink periods, most of the pointed instru-
ments cannot be used. Thus the timing of science observa-
tions and of the downlinks must be scheduled very care-
fully with respect to interesting observing opportunities, in 
order to collect and return as much science data as possible 
while not overlling the onboard recorder. One of the Cas-
sini objectives that we have modeled is based on this on-
board recorder capacity limit. While this could be modeled 
as a constraint that must not be violated, we have chosen 
instead to dene an objective to minimize the maximum 
data volume recorded, accounting both for the collection of 
data by the science instruments, and the dumping of data to 
the ground. Thus the schedule can be in an infeasible state 
while it is being worked on, which is useful since the de-
gree of violation of the constraint is very visible to the user. 
As a second objective, we have chosen to maximize the 
total science data volume collected. The initial set of ac-
tivities to be scheduled is dened by the science teams 
working with the science planners. The strategies that can 
be employed for improving the schedule with respect to 
data volume include:
• Extending or reducing the planned downlink opportu-

nity windows, with a corresponding decrease or in-
crease in the time spent collecting science data.

• Changing a 70m contact to a 34m one or vice versa: a 
70m contact can download nearly three times as much 
data, but can be more difcult to obtain.

• Performing an across-the-board reduction in data col-
lected, achievable in an instrument-dependent way (e.g. 
possibly by switching to a less data intensive opera-
tional mode).

These strategies are encoded in the decision variables 
passed to the scheduling engine.

Figure 6 shows a domain-specic GUI illustrating this 
problem for a 10-day schedule period, illustrating a 2-D 
Pareto surface generated by the multi-objective evolution-
ary algorithm. As the user selects points on the Pareto fron-
tier (lower left), the Gantt view (right) changes to show the 
detailed implementation of that schedule. The constraining 
data recorder volume is shown at the top of the Gantt view, 
where the red horizontal line shows the data volume limit. 
The tabular view on the right shows all of the contributors 
to the recorded data volume at the start of each downlink 
window. This table includes both primary and secondary 
(“rider”) activities, and can be sorted by data volume, per-
centage of total data on recorder, science team, or activity 
identier.

Figure 6. A view of a Cassini schedule illustrating the Pareto trade-off in  the lower left and a Gantt  chart view of the various scheduled  
activities. Onboard data storage is limited to the value indicated by the red line in the Gantt view (second chart from top).
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4.3 Cluster WBD Scheduling
Cluster II[14] is an ESA mission consisting of four identi-
cal spacecraft in a tetrahedral formation (Figure 7). Cluster 
is investigating the Earth’s magnetic environment and its 
interaction with the solar wind in three dimensions. One of 
the instruments on Cluster is the Wideband Data (WBD) 
plasma wave experiment[15]. The WBD instrument on 
each of the four Cluster spacecraft operate by providing 
high-resolution measurements of the electric and magnetic 
elds in a range of frequency bands. There is no onboard 
storage for WBD and real-time data from the instrument is 
sent directly to earth to NASA’s Deep Space Network 
(DSN) antennas. Several factors make scheduling WBD a 
challenging problem: Figure 7. Illustration of the ESA Cluster II four-spacecraft con-

stellation

Figure 8. MUSE multi-objective optimization applied to a one-week Cluster WBD schedule. Visualization  of the 4-D Pareto frontier is 
assisted by 2-D projections and “brushed” histograms (left). Numbered features are described in the text.
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• To take an observation requires that the Cluster space-
craft be in a scientically interesting region of the mag-
netosphere at the same time it is in the eld of view of 
a DSN antenna

• There are numerous opportunities for DSN antennas at 
one of the three DSN communications complexes to 
support from one to four Cluster spacecraft at a time

• These opportunities fall into a range of priority catego-
ries, types of science, and observation durations, and 
the selected distribution of selected opportunities needs 
to meet the desired distribution as closely as possible

• Because a high-value Cluster opportunity involving 
three or four spacecraft will frequently run into conten-
tion for use of three or four DSN 34 meter antennas, 
avoiding contentious regions of the schedule is an im-
portant strategy to avoid later disruptions

As a consequence of these factors, a number of tradeoffs 
emerge when generating a Cluster schedule. For example, 
schedules with many multi-spacecraft observations tend to 
run into contentious periods of DSN antenna oversubscrip-
tion by other users, and so they are vulnerable to disrup-
tion. The ability to explore these and other tradeoffs in the 
schedule is an ideal application of the MUSE approach.

We have adapted the MUSE multi-objective scheduler to 
the specic problem of generating a one-week Cluster 
WBD schedule of observations. The decision variables in 
the problem map to possible combinations of categorized 
priority and science types among the available opportuni-
ties. For example, in order to meet the objectives of a sam-
ple of observations of each scientic category, no more 
than one or two from each category should be considered 
as candidates at once. Therefore we have developed an 
encoding of the possible combinations that ensures that 
conditions like this are satised. We have investigated the 
initial use of four different maximization objectives:
• Collision avoidance: maximize the observation time 

spent outside contentious periods insofar as they are 
known in the preliminary DSN schedule

• Spacing: spread out the Cluster observations roughly 
evenly over the schedule time span

• Total time: maximize the total observing time
• Multi-spacecraft time: maximize the weighted time 

spent in multiple spacecraft observations, reecting the 
fact that, e.g., one 3-spacecraft observation is of greater 
science value than three separate single spacecraft ob-
servations

Figure 8 shows an example population of schedules gen-
erated with the prototype Cluster scheduler. The X-Y 
plot (1)  shows the collision avoidance metric vs. multi-
spacecraft time, and the tradeoff options are clearly visible. 
This digram shows two of the four objectives (selected 
from the lists on the left of the plot), projected from from 
four to two dimensions. One particular schedule (selected 
in the crosshairs of the X-Y plot) is shown at the bottom of 
the window (3), along with the resource consumption of 
existing activities in the schedule that are competing for 

the same antennas that Cluster can use (5). The red histo-
grams on the far left (1)  show the overall distribution of 
objective values. The blue histogram subset is selected 
interactively by the user as a range on one of the charts (2), 
whereupon the corresponding points in the other objective 
histograms are also colored blue. In this case, the extreme 
maximum range of collision avoidance has been selected 
(uppermost histogram), which “brushes” the other histo-
grams coloring the same points (and highlighting them in 
the X-Y plot as well). The anti-correlation of collision 
avoidance and multi-spacecraft time is clearly visible.

The prototype Cluster scheduler has been used so far by 
the Cluster scheduling team to generate six weeks of op-
erational schedule inputs. The use of the scheduling soft-
ware signicantly shortens the time required to generate 
each schedule, and more importantly provides the sched-
uler with condence that a good schedule has been created, 
and quantitatively how well it meets the various criteria. 
The most important remaining challenge for the Cluster 
domain is that of providing the infrastructure for optimally 
revising an existing schedule as external factors impact the 
original choices.

5 Conclusions
We have described the MUSE Multi-User Scheduling En-
vironment as an architecture for multi-user multi-objective 
scheduling. This problem is common to many space sci-
ence missions and scientic facilities. To elaborate the nec-
essary features and implementation trade-offs, we have 
adapted this architecture to three different domains: JWST 
scheduling, Cassini science planning, and Cluster WBD 
opportunity scheduling. While these adaptations are by no 
means complete, they have shown the signicant promise 
of our approach, and generated interest on the part of op-
erations teams for these missions as of potential assistance. 
We plan to make the MUSE adaptations available to these 
teams, and in one case (Cluster) the software has been used 
to generate operational schedule inputs.

Future plans include the adaptation of MUSE to addi-
tional missions for the purpose of further validating our 
overall approach, and to provide a framework for broader 
use. We are also actively exploring other visualization ap-
proaches that can be used for higher dimension objective 
spaces. The combination of improved schedule compre-
hension and visibility, along with collaborative schedule 
development, offers the potential for a signicant advance 
in scheduling support for future missions.
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