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ABSTRACT

The paper in hand proposes a localization algo-
rithm, where refinements in the robot’s trajec-
tory take place by exploiting the orbital images
that cover the same area as a surface exploratory
robot. It makes use of elementary graph theory
terms in order to compare the 3D reconstructed
area with the respective satellite image by exam-
ining the spatial distribution of the salient land-
marks between the two different views. The uti-
lized dissimilarity metric is the Graph Edit Dis-
tance (GED), which compares the two views and
defines wether improvements in global orienta-
tion and position of the robot should be done.
Once there is an indication for improvement the
Iterative Closest Point (ICP) algorithm is used to
refine the position of the robot backwards to the
last executed orbital refinement. The proposed
method is evaluated in unstructured non-urban
scenes, where canonical formations are not avail-
able, as it is the case of space environments.

Key words: orbital imaging, visual SLAM, vi-
sual odometry, MST Sub-graph, ICP.

1. INTRODUCTION

To effectively navigate in their operation environ-
ments and accurately reach their target location,
planetary robots require reliable self-localisation
abilities. The use of vision sensors is a common
choice for space exploration [KBN+11], where a
lot of research has been conducted [Doc]. The
problem of a mobile robot learning a map has
been intensively studied in the past and is usually
cited as the Simultaneous Localization and Map-
ping (SLAM) problem. However, the existing so-
lutions to the SLAM problem typically rely on
either sparse bundle adjustment, or loop-closure
refinement steps as described in [SKLP06] and
[NH05] respectively, in order to obtain global
consistency and do not exploit any relevant in-
formation, even if it is available. In recent years
an abundant of research methods have been pro-
posed in the field of mobile robot navigation, tak-
ing advantage of prior knowledge of the robot’s
environment, which is then fussed with the re-
sults of SLAM to obtain more accurate and ro-
bust localization results. This extra piece of in-
formation might derive from aerial or satellite
images. Compared to the standard SLAM ap-
proaches, the use of a global external information
enables these techniques to provide more accu-
rate solutions by delimiting the error when vis-
iting new regions for the first time. Contrary to
the traditional localisation techniques, those that



Figure 1. Block diagram of the proposed method.

include orbital imagery can substitute auxiliary
sensors, e.g. GPS, in environments where such
sensors are not operable, such as on a Lunar or
on a Martian surface.

More analytically, the authors in [KSD+11]
match the frames captured by 3D laser scanners
with aerial images that have been acquired from
a viewpoint significantly different from the one
of the robot. The 3D-scans are top-down re-
projected in order to be consistent with the visi-
ble territory in the reference map. An edge detec-
tion preprocessing step is utilized to extract the
feature points from the aerial image, while the
matching is accomplished by detecting structures
in the 3D scan, which potentially correspond to
intensity variations in the preprocessed aerial im-
age. Then the correspondences are added as
constraints in a graph based formulation of the
SLAM problem, providing highly accurate so-
lutions. Additionally, the method described in
[KR04] utilizes image processing techniques to
detect roads on aerial images. In this work, Ga-
bor filters were chosen, which are used for tex-
ture analysis, due to the fact that the employed
aerial images are of low contrast and, thus, char-
acterized by excessive clutter in urban regions
that renders the simple image processing tech-
niques impractical. In this method the extracted
edges are combined via particle filtering with the
noisy GPS way-points in order to produce accu-
rate location estimations for the robot. On the
other hand, some techniques have adopted al-
ready existing tools in order to obtain the ad-
ditional information from the aerial images. In
[NTD+11] the Google Static Maps API has been
utilized in order to create a custom map style, the
so called ”road map”, by removing all non-road
features and texture from the street maps. More-

over a simple image segmentation is performed
by selecting white as the foreground color and
black as the road one. The satellite image regions
that correspond to the roads are thresholded us-
ing their intensity values and the result is a bi-
nary image that contains only on road visual fea-
tures. The ground camera and the satellite image
matching, is performed by mixing particle filters
with Bayesian tracking. The particle filter holds
the samples from the probability distribution of
the possible robot states and performs a global
refinement in the trajectory of the robot. In a sim-
ilar attempt the authors in [LCH08] presented a
particle filter system performing localization on
aerial photographs by matching images acquired
from the ground by a monocular vision system.
Correspondences between aerial and ground im-
ages have been detected by matching line fea-
tures. These have been generated from aerial im-
ages by a Canny edge detector and Progressive
Probabilistic Hough Transform (PPHT). More-
over in the methods described in [PMB09] and
[Pin08], basic image processing techniques for
the features detection combined with machine
learning have been adopted for the matching of
the aerial and ground camera images, to pro-
duce refinements for the initially estimated Vi-
sual Odometry (VO). These methods rely on two
different assumptions; the first one is that the
computational demanding pre-processing steps
on the aerial images and the training procedure
of a classifier, are routines that can take place
off-line, while the second one is that only a very
small training set is required to classify large
map areas. However, the majority of the exist-
ing relevant methods focus on the localisation
of robots operating in structured environments,
where both the ground and the orbital images are
characterised by prominent and well-defined for-
mations such as buildings and roads. Yet, space
scenes lack such canonical formations and as a
result a different, less texture-dependent method
should be adopted instead.

The method proposed in this work processes or-
bital images that cover the same area as a surface
exploratory robot. The result of the discussed
method is a refined orientation and position es-
timation of the robot, as compared to the estima-
tions obtained by pure VO. The robot observes
its environment, extracts SIFT features out of it,
and utilizes 3D stereo vision techniques to re-
project them onto the surface plane. A similar
feature extraction procedure is applied to the or-



Figure 2. Satellite image and the respective re-
gion of interest.

bital images. The two sets of features are pro-
jected on the surface plane and, consequently two
different graphs are formed by calculating all the
inner-distances (e.g. Euclidean) among the fea-
tures. We aim at extracting patterns within these
graphs in order to assess the quality of the re-
sulting 3D mapping. Therefore, we adopt the
minimum spanning tree (MST) subgraph detec-
tion methodology [GH85], which reveals possi-
ble patterns on the topology of the detected fea-
tures. Due to the nature of the explored sur-
faces the two different subgraphs are examined
for common spatial information by means of a
dissimilarity measure such as the Graph Edit Dis-
tance (GED). This measure is used to determine
whether the orbital image is able to provide any
improvement to the robot location estimations, or
the algorithm should rely only on the VO output.
If GED indicates that orbital images can improve
the results, the Iterative Closest Point (ICP) algo-
rithm is used to refine the positioning of the robot
backwards since the last executed orbital refine-
ment.

2. ORBITAL IMAGING

2.1. Satellite Image Acquisition

The orbital images, that cover the same area
as the surface exploratory robot, have been ob-
tained by the Google Static Maps API [API].
It’s resolution of the source images is approxi-

mately 5cm/pixel in cities, however in non-urban
areas the resolution can be even worse such as
30cm/pixel. The users can acquire respective im-
ages with simple HTTP requests, by specifying
the location, the zoom factor, the map type, the
image size and the format in the query string.
For the needs of the proposed method, the uti-
lized map style was the terrain one. At this point
it should be mentioned that an orbital image cov-
ers a very large surface, contrary to the surface
covered by the field of view of the ground cam-
era; therefore, an orbital image acquired from the
Google API can produce refinements for large
3D reconstructed areas. In addition, the fea-
ture detection procedure from the ground cam-
era should only occur in real-time, whilst the
entire pre-processing of the aerial image can be
done off-line. Therefore, the initial orbital im-
age has been divided into regions of interest each
one having size of W × H , where W indicates
the field of view of the ground camera expressed
in pixels over the orbital image and H is the
height equal to a specific traveled distance that
corresponds to a constant number of frames, as-
suming a normal average speed for the robot.
Fig. 2.1 presents a detected region of interest
from a higher resolution satellite image.

The next step of the proposed method comprises
the detection of the most salient features in the
orbital image. There is a great variety of feature
detector algorithms that can be utilized, however,
due to the fact that the used orbital images have
low resolution and comparisons among views
with different scales will take place (as it will
be described in Sec. 4), a very robust algorithm
should be employed here, namely the Scale In-
variant Feature Transform (SIFT)[Low99]. This
algorithm comprises a scale and rotation invari-
ant detector and descriptor and the main reason
for chosing it lies in its potential to achieve high
repeatability, distinctiveness and robustness. The
output of the SIFT features on a specific region
of interest on an orbital image is described in
Fig. 3(a).

2.2. Orbital MST Sub-graph

Assuming that in Fig. 3(a) the data matrix X2×N

corresponds to N detected features and xi ∈ R2,
i = 1, 2, . . . , N , then G = (X,G) is a fully con-
nected, undirected graph defined on X . Also, let



(a) (b)

Figure 3. SIFT features on the satellite image
and b) the MST graph between the features su-
perimposed on the image.

E = {eij} be a set of all edges eij = (xi, xj).
For each edge eij we can additionally assign a
weight wij related by its Euclidean distance, i.e.
wij ≡ ‖eij‖ = ‖xi − xj‖. An acyclic subgraph
G can be defined, which connects all the vertices
such that the total weight, or the total length of
the edges, to be minimum. Since the weights are
symmetrical, it is sufficient to consider only the
edges eij for which i > j (or alternatively the
edges eij for which i < j). This can equivalently
be expressed as a problem of finding (n-1) edges
forming a tree that minimizes the total weight:

min
∑
e∈G

‖eij‖ (1)

with the condition that ‖G‖ = n − 1, G ⊂ E
and ∃! path(xi, xj),∀xi, xj ∈ X, i > j. Here
∃! denotes a unique existence and the minimum
path(xi, xj) ≡ path(xi, xi+1, . . . , xj). This op-
timization is equivalent to computing the MST
for a given set of observations. The aforemen-
tioned subgraph detection method is performed
on the detected features of Fig 3(a) and the re-
sulted MST is presented in Fig. 3(b). Note that
the chosen edges outline a specific pattern and
describe uniquely the spatial distribution of the
detected salient features in the orbital image.

3. SIMULTANEOUSLY LOCALIZATION
AND 3D MAPPING

3.1. Visual Odometry

The proposed VO method employs a SIFT fea-
ture detection and matching methodology, which
detects and matches the salient points within two
consecutive frames. The output of this procedure
is a set of N matched features between two suc-
cessive images. In the next step, the previously
extracted 2D points, are transformed into 3D
ones, i.e. a convertion from image to world co-
ordinates occurs. This procedure comprises two
distinct steps: the first one being the disparity es-
timation of the scene utilizing a stereo correspon-
dence algorithm and, consequently, every salient
point obtains a depth value; the second one is the
triangulation of the 3D points, taking advantage
of the previously estimated disparity values. The
proposed system assumes a stereo rig and, there-
fore, the resulting algorithm is a specially de-
signed stereo correspondence one, which is de-
scribed analytically in [NSG11]. Once the dis-
parity value has been computed for all the N fea-
tures, they are transformed into the 3D world co-
ordinate system by triangulation, given the intrin-
sic parameters of the stereo camera setup. The re-
sult of this procedure is a sparse 3D point cloud
of N matched features among the consecutive
frames. Given the previously matched 3D point
clouds, we now seek for the rigid body motion
of the stereo camera between all the consecutive
pair time instances. The assumption required in
the analysis hereafter is that the observed envi-
ronment is static concerning the two adjacent im-
age pairs and that the sole non-static object is the
camera. In this case, the local coordinates of the
features position vectors p1

′
, . . . ,p

′

N in the ref-
erence image of the second pair are related to the
position vectors p1, . . . ,pN in the reference im-
age of the first pair by the equation:

pi = T +R · p
′

i for i = 1, 2, . . . , N, (2)

where T and R are the translation and the rota-
tion matrices, respectively, describing the cam-
era’s movement between the two reference sparse
point clouds. In the ideal case, six perfectly
matched features are sufficient to compute the



matrices T and R. However, in realistic, error-
suffering situations, a larger set of redundant
points is needed. The sought T and R should
conform with a sum of quadratic differences min-
imization criterion. The application of a Pro-
crustes transformation [SSV09] to the resulting
two point clouds, reveals the relative translation
T (x0, y0, z0) and rotation R of the rover. This
way, a linear transformation is determined be-
tween the point cloud at time t and t + 1 that
correspond to consecutive samplings.

3.2. 3D Map Building

Given the depth information from the disparity
image and the aforementioned triangulation pro-
cedure, a dense 3D point is constructed for every
consequent frame. Additionally, since the depth
information has been extracted from the same
camera, a texture mapping procedure is straight
forward, by re-projecting the calculated dispar-
ity image into a z-buffer so that the left reference
image Irgb(x) will refer to the color and depth of
the same world point. This procedure is repeated
in every consequent frame and by utilizing the
incremental motion estimation the different 3D
point clouds can be merged into a global 3D map
of the explored environment.

The output of the previously described map
building procedure is depicted in Fig. 4(b), which
is the 3D reconstruction of the scene with refer-
ence image to the left of the stereo pair Fig. 4(a).
The 3D map presented in Fig. 4(b) is a result
of merging distinct 3D point clouds following
the output of 20 consecutive robot motion es-
timations. In the ideal case where the motion
estimation procedure does not introduce an er-
ror in the system, the resulting merged 3D point
clouds whould have great consistency. However,
due to drifts in VO calculation the map building
procedure suffers from accumulative errors caus-
ing faulty registrations of the 3D point clouds.
The solution to this problem is presented analyt-
ically in Sec. 4. The resulted 3D map is then re-
projected top-down in order to achieve the same
viewpoint as one of the orbital images and, once
again, the SIFT feature detection methodology
is employed (Fig.4(c)). Then, the set of the de-
tected features is processed further to calculate
the MST subgraph revealing the pattern of the
topology of the detected features Fig. 4(d).

(a)

(b)

(c) (d)

Figure 4. a) An stereo pair sample, b) the respec-
tive 3D reconstructed surface, c) top-down re-
projection and SIFT features detection and d) the
MST graph between the detected features, over-
laid on the top-down re-projected scene.

4. MAP MATCHING AND ICP REFINE-
MENT

In cases where drifts do not occur in the VO cal-
culation, the 3D mapping is free from erroneous
registrations. However, this rarely happens and
the matching of different 3D point clouds de-
mands further optimization. There are methods
such as the loop-closure one [NH05], which in-
creases the efficacy of a VO algorithm, however
the computational burden of the algorithm is pro-
hibited in space exploratory robots where spar-
ing technologies should be adopted. Therefore,
this paper introduces the use of orbital images



as prior knowledge of the unexplored territory
which is compared to the 3D reconstructed sur-
face in order to supervise the accuracy of the VO
algorithm.

More analytically, once the orbital MST sub-
graph and its ground plane counterpart have been
calculated, a metric that defines the common
spatial information of the two different views
should be examined. The utilized metric is the
GED [GXTL10] deriving from the graph the-
ory. According to the GED, the two examined
graphs might describe the same topological pat-
tern, when the number of the common edges to
the total number of edges is greater than a prede-
fined threshold. In our case the threshold value
was set tolerable enough due to the great uneven-
ness in the resolution between the orbital image
and the 3D reconstructed one, i.e. the top-down
re-projected image produces more SIFT features
than the orbital one. In addition this metric in-
dicates that the resulted MST subgraphs should
have the same number of the edges, yet rare to
happen. This can be counterbalanced by omit-
ting SIFT features with great spatial proximity
to neighbor ones, leading in a subset of features
equal to those that produced on the orbital image.

Once the GED between the calculated MST sub-
graphs is greater than the predefined threshold,
we can safely assume that the output of the VO
algorithm is accurate enough and further adjust-
ment would not be helpful. On the other hand,
if the GED is below the threshold, then it is in-
dicated that the 3D map has been erroneously
estimated and, therefore, a further optimization
is sought. In these cases the Iterative Closest
Point (ICP) algorithm is employed to refine the
positioning of the robot backwards since the last
check executed with orbital images. In the ICP
[BM92], points in a source cloud obtained at
time t are matched with their nearest neighboring
points in a target cloud acquired at time t+1 and
a rigid transformation is found by minimizing
the sum of the squared spatial error distances be-
tween the associated points. ICP has been shown
to be effective when the two clouds are already
nearly aligned, therefore, an initial motion esti-
mation is firstly performed on the 3D point cloud
(t+1) and then the output of the ICP is combined
with the rigid transformation. Otherwise, the un-
known data association between the point clouds
at time t and t+1 may lead to convergence at an
incorrect local minimum.

(a) (b)

Figure 5. a) Orbital image with the MST sub-
graph overlaid, b) top-down re-projection of the
3D reconstructed area with the MST subgraph
overlaid.

5. ALGORITHM ASSESSMENT

The performance of the proposed localization al-
gorithm has been evaluated with real outdoor
data. The dataset used is the New College
Dataset [SBC+09]. However, due to the fact that
the dataset mainly induces urban areas, the algo-
rithm has been evaluated only in those parts that
lack canonical formations. The total traveled dis-
tance that has been examined is 1000 frames that
corresponds to approximately 57m route. The
check with the orbital imaging along this route
was performed every 20m with overlapping re-
gions. Indicatively, we present an example were
the orbital MST subgraphs and the ground plane
MST graph share great coherence and no further
ICP optimization was needed (Fig. 5).

More analytically Fig. 5(a) depicts the satellite
image with the MST subgraph calculated over
the detected features, while Fig. 5(b) depicts the
respective 3D reconstructed area with the MST
subgraph overlaid on it. Note that in this case the
initial detected SIFT features have been down-
sampled ensuring that the two subgraphs will
share the same number of edges. The estimated
GED is 0.8820 indicating that the two subgraphs
share a great amount of common spatial informa-
tion something that reveals that the VO and, con-
sequently, the map building procedure was accu-
rate enough and no further refinements should
take place. In Fig. 5 we exhibit an occasion
where the GED returns value equal to 0.2186,
something that indicates revision to the VO cal-



(a)

(b) (c)

Figure 6. a) Orbital image with the MST sub-
graph overlaid, b) top-down re-projection of the
false 3D reconstructed area with the MST sub-
graph overlaid, c) top-down re-projection of the
3D reconstructed area refined with ICP, and the
MST subgraph overlaid on it.

culation. Moreover, it is obvious that the resulted
MST subgraphs do not share any common topo-
logical patterns. Therefore, the ICP refinement
performed on the on 3D point clouds, since the
last executed orbital check. The new GED was
calculated to be 0.7805, revealing that the accu-
racy of the VO and the 3D map building algo-
rithm has been significantly improved. In addi-
tion we demonstrate the refined global 3D recon-
structed area, that corresponds to the entire trav-
eled route. During this route we performed five
different checks with overlapping regions and the
GED indicated that in two of them a refinement
should be performed with the ICP algorithm. The
traveled route is depicted in Fig. 7(a) as it de-
rives from the Google API, while the output of
the SLAM algorithm, which is a 3D map is pre-
sented in Fig. 7(b).

(a)

(b)

Figure 7. a) Orbital image of the traveled route,
b) the 3D map of the proposed methodology in-
cluding the ICP refinements. Note that none of
the buildingsappeared in (a) participates in the
3D map, as they do not appear in any of the
stereo pairs.

6. CONCLUSIONS

In this paper a VSLAM localization algorithm
that utilizes orbital images for the refinement of
the resulted 3D map has been presented. The al-
gorithm takes advantage of a set of efficient tools
based on graph theory for the detection and the
matching of graph patterns in the topology of de-
tected landmarks. More specifically it utilizes the
MST subgraph detection and a simple metric i.e.
GED to match the graphs. The whole procedure
makes use of the ICP algorithm only when there
is a major mismatch between the orbital and the
reconstructed images, thus avoiding redundant
computational burden. Moreover, the proposed
method is specifically targeted to the characteris-
tics of unstructured natural environments, as the
ones found on Moon or Mars. Last, we have per-
formed preliminary experiments in unstructured
terrains and we found that the proposed method
can provide reliable solutions to fine-tune local-
ization and 3D mapping problems.
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