
USING ONTOLOGY TO IMPROVE AUTONOMOUS INTERACTIONS BETWEEN SPACE
VEHICLES: APPLICATION TO MULTI-VEHICLES PLANETARY EXPLORATION

MISSIONS

Gaëtan Séverac and Éric Bensana

ONERA, the French Aerospace Lab, F-31055 Toulouse, France. Contact: surname.name@onera.fr

ABSTRACT

In prospective planetary missions, heterogeneous vehi-
cles such as orbiter, lander, rover, blimp will have to co-
operate in-situ in order to increase the overall exploration
capabilities. This paper is aimed at presenting the current
status of modelling and methodological developments to
support the definition and implementation of an In Situ
Interaction Service for any space vehicle subject to coop-
erate in such missions.

The main objective of this work is to increase the over-
all system’s autonomy by allowing local direct interac-
tions between vehicles, with minimal intervention from
the ground control. The knowledge modeling and shar-
ing, using ontology as formalization support, as well
as the implementation of associated interactions mech-
anisms will be the the basis to support an efficient coop-
eration. A simulation environment based on ROS, is cur-
rently under development to test and validate these con-
cepts.

Key words: Multi-Robot, Space Exploration, Robot In-
teractions, Ontology, Simulation.

1. INTRODUCTION

The presented work is part of a prospective research pro-
gram involving CNES (French Space Agency) and ON-
ERA, related to the study of future robotic systems for
planetary exploration. In the following, the term robotic
agent is used as a generic term for the different kinds of
device or vehicles which can be used for space explo-
ration (orbiter, rover, lander, blimp, mole...).

One of the objectives of the work is to prepare the transi-
tion towards missions involving several robotic agents de-
ployed on purpose or which can be used simply because
of their presence in the vicinity. Mainly because of com-
munication constraints, it is quite impossible to consider
a global and fine coordination of such a set of robotic
agents from a mission control based on Earth. Conse-
quently a major part of the coordination process has to

be done directly on site by the robotic agents themselves
and local peer-to-peer communications will be assumed
to achieve a high level of autonomy in the way how the
robotic agents interact.

The ongoing research concerns mainly the characteriza-
tion of the operating capabilities of robotic agents, in
order to define an operating manual for each robotic
agent based on the notion of service. This manual will
be shared with other robotic agents when a new robotic
agent becomes available for the mission and updated ac-
cording to events affecting the availabilities of the ser-
vices it describes. In other words, such a manual will de-
scribe what a robotic agent can do and how it can do it to
the attention of others robotic agents involved in the mis-
sion. The first part of this work concerns the modelling of
the knowledge that a robotic agent should embed (envi-
ronment, characterization of its own capacities and those
of neighbouring robotic agents) and the specification of
the high level interactions mechanisms needed to share
and use this knowledge autonomously. The second part
propose a methodology to derive the ontological descrip-
tion of the agent knowledge and its implementation in the
control architecture of the agents. Finally some elements
will be given on the simulation environment which will
be used for the validation and testing of these concepts.

2. PLANETARY ROBOTIC EXPLORATION BY
MULTI-AGENT SYSTEM

2.1. Context

Actually in robotic exploration mission, local interac-
tions - between for instance Mars orbiters and rovers -
are limited to data storage and communications relay, and
are still supervised and controlled by the ground control
which schedule all the activities.

Future robotic missions can be designed for the prepara-
tion of manned missions to the Moon or Mars, or to go on
the exploration of planets inaccessible to humans because
of distance or too hostile environments (like Venus for in-
stance) or even for the exploitation of local resources (e.g.



for the production of propellant or water for inhabited fa-
cilities). But given the development constraints of space
robotic agents (design, launch, cost, computing, power
generation etc.), the future of space robotic exploration
lies more in the development of missions involving sev-
eral robotic agents – coming from different agencies and
dedicated to specific tasks – than in the design of costly
multi purpose robotic agents. In such perspective, all
the agents will not arrive on site in the same time, but
in sequence over a time horizon which can be counted
in years. This multi-agent missions will be more com-
plex but present additional advantages if the agents are
able to cooperate on site autonomously (e.g. improving
mission’s flexibility and reliability thanks to opportunis-
tic team reconfiguration, computing resources sharing...).

The assumption is made that in future missions, involving
different robotic agents, communication and knowledge
representation standards will be used to allow a more ef-
ficient collaboration between robotic agents themselves.

For this study, the global context selected concerned the
exploration of planet with an atmosphere (like Mars or
Titan), performed by several robotic agents (orbiters or
passing-by probes, rovers of different types and aerial
robotic agents), with no human presence on site. This
allows to consider a wide range of scenarios, like crater
or canyon exploration, with different levels of complex-
ity. This context is more detailed in the paper [SB12].

2.2. Problematic

The main objective is to increase the autonomy of the
overall planetary exploration system by improving di-
rect local interactions between robotic agents, keeping in
mind the actual standardization and interoperability ef-
forts. To support the standardization process, the pro-
posal is to develop an ontology dedicated to space explo-
ration. When a new robotic agent is developed, this on-
tology will be used to specify and implement an In Situ
Interaction Service (ISIS) software component that will
be integrated into the robotic agent. Once on site, this
generic component will support local communications,
exchanges and cooperation with already present robotic
agents, having also an ISIS component and thus sharing
the same knowledge standard. The ISIS component will
be an additional function of the control software archi-
tecture of the robotic agent, in charge of local commu-
nications and supporting different levels of peer to peer
interactions between robotic agents.

Globally the set of robotic agents composing the explo-
ration system can be thought as a dynamic network
where nodes are the agents and edges represent loose
relations between these agents, like IsKnownBy or Can-
CommunicateWith etc., which only state that two robotic
agents have a mutual knowledge of their capabilities and
that they can interact in one way or another. This vir-
tual network is dynamic because it has to evolve in time
according to internal or external events like the arrival

or the departure of robotic agents from the exploration
site, the reception of ground control requests for autho-
rizing or cancelling the sharing of a robotic agent, local
failure within a robotic agent or external effects (weather
conditions, dust...) impacting the availability of agents,
loss of communication etc. To generalize all this type of
situations, the capabilities of the robotic agents will be
described based on the notion of service, and the virtual
network of robotic agents involved in a mission at a given
time will be directly linked to the current availabilities of
the different services of each agent.

Each robotic agent can be described as a set of equip-
ments (power source, sensors, actuators, computing re-
sources...) and an embedded control architecture includ-
ing an ISIS module which will be in charge of super-
vising the local communications using dedicated equip-
ments (antennas, receiver, transmitter etc.) and managing
an embedded knowledge base where information about
the environment of the robotic agent (including other
known robotic agents) will be stored as well as its own
description. The ISIS module will be also responsible
to broadcast its own services availabilities (for instance
when a service becomes unavailable because of a hard-
ware failure or pre-emption.

To ensure interoperability among the robotic agents in
the service sharing process, all the robotic agents have
to use the same representation of the associated knowl-
edge. They must share concepts about their environment
like weather conditions or the type and quality of soil, the
type of structured data which can be exchanged (map,
mission goals etc.). All those information should have
associated descriptors to precise their quality (e.g. fresh-
ness, reliability w.r.t. the source of information, accuracy,
etc.). These concepts and the possible relations between
them will be described in an ontology.

3. RELATED WORK

3.1. Service Oriented Architecture

From a cooperation perspective, each robotic agent will
be seen as a provider of a set of services which can be
possibly used by other agents and as a consumer of ser-
vices provided by others. Several definitions of service
have been proposed in the literature. A service can be
seen as a unit of work done by a service provider to meet
the need of a service consumer [He03], and it has to be
described through a contract that describes the ”what” is
achieved and implemented, but certainly not the ”how” it
is achieved [PL03].

The notion of services in multi-agent systems has been
widely studied in the area of Service-Oriented Architec-
tures (SOA). In SOA the accent is put on communica-
tion. The architecture of the system is there composed of
three main parts: the Service Provider, the Service Re-
quester (or Client), and the Service Registry, which facil-
itates service discovery by the requesters in centralized



network architecture [ABFT10]. SOA contributed to the
development of Web Services and present several bene-
fits [PTD06] such as interoperability (as long as an agent
complies with the service protocol, it will be able to in-
teract with the system), code reuse (a functional service
in a system can be easily adapted to another system) and
support in the design, evolution and maintenance of the
system. So it is now also interesting for other software
development, even in critical domain such the space op-
eration [Sar12]. CyberPhysical Systems (CPS), where
software agents and physical devices are connected to-
gether, can be seen as an extension of these principles
[PTD06]. Recently, Service Oriented Robot Systems
(SOMRS), where all agents of the system are robots, use
also the notion of service to achieve cooperation, but like
in SOA solutions they are still centralized, with the use
of a service registry.

In our context, where robotic agents may or may not co-
operate, centralization should not be thought as a starting
architectural choice and each robotic agent should have
its own partial service registry (at least those for the set
of other robotic agents it knows). Nevertheless, it should
be also be possible that one or several robotic agents, be-
cause of their capacities, may be used as a service repos-
itory for a part of the exploration system (for instance an
orbiter could play this role).

Even if running a given service can be a complex task
for a robotic agent, from an external point of view, the
only things which matter to know is what are the avail-
able services and how to use them. This consists of hav-
ing list of services associated with: their status (avail-
able or not) or with a predicted time-line on a given hori-
zon specifying the future time intervals of availability, the
protocol to follow to implement the service between two
robotic agents (services parameters, physical constraints
etc.), and the description of what can be expected from
the service execution goal achieved, data collected, how
information is exchanged (rate, mode of acquisition, for-
mat etc.).

Services and how they are used are then able to fully de-
scribe the possible use of robotic agents and can therefore
be considered as an operating manual [BS09]. It is impor-
tant to distinguish the description of services from their
implementation and the description of the functionalities
on board supporting them.

3.2. Ontology

All the multi-robot applications need knowledge repre-
sentation and sharing between agents to support intelli-
gent cooperation mechanisms [EMA02]. Numerous re-
searches have been done on knowledge representation
and reasoning such as the Knowledge Interchange For-
mat (KIF) [GF92]. Applications of formal knowledge
representation and semantic reasoning to multi-robot
are evident to support knowledge inferring [CNTT09,
AEEP11].

An approach that seems particularly interesting is to use
ontologies. From the point of view of philosophy, an on-
tology represent a theory about the nature of being or the
kinds of existent [AEEP11]. From a computing point of
view ontologies are related to description logics and they
are used as a common representation of a specific do-
main that allows different individuals to share concepts
and rich relations among them [BS01]. Concretely an on-
tology is ”simply” composed of concepts that can be any
kind of things, linked by relations. The concepts can be
instantiated to represent the existence of a unique entity.
The most commune way to implement ontologies actu-
ally is to use the OWL language, which is a specializa-
tion of the RDF/XML language, specified by the World
Wide Web Consortium (W3C)1. As any modelling activ-
ity, each ontology reflects choices of its authors (even if
it is designed with the aim to be generic) and does not
guarantee the sharing of information but simply allows it
[Dep96].

In robotics, ontologies are used to specify and concep-
tualize a knowledge accepted by a community, using
a formal description to be machine-readable, sharable
[SCAGR11] and to reason over that knowledge to in-
fer additional information [SM05]. Some examples of
the use of ontology in robotic applications are: The
RoboEarth European project [Wai11], which aims to rep-
resent a world wide database repository where home ser-
vice robots can share information, about their experi-
ences, with abstraction to their hardware specificities.
The Proteus project [MP08] which supports scientific
knowledge transfer between different robotics commu-
nities of France, by representing robots and scenarios
in an ontology to guaranty a commune and standardize
use. The A3ME ontology [HJB08] defines heterogeneous
mobile devices for crisis situations application, to allow
communication interoperability between them, indepen-
dently to the hardware platform, to the operating system
or to the communication system. The SWAMO NASA
project [WSS+08, UPWS11] uses ontology as a proto-
typing method to provide standard interfaces to access
different mission resources (sensors, agent capabilities...)
of spacecrafts. SWAMO ontology is used both to define a
commune description of the knowledge (application do-
main and agent-based control system for sensor web) and
help designer in the conception and implementation of
the system (satellites or rovers).

4. MODELING OF ROBOTIC AGENTS

4.1. Common knowledge representation

The purpose here is to represent all the knowledge of
an agent in an unambiguous manner, ontology offer a
good solution to model the representation chased for this
knowledge, but previous reflections have to be done be-
fore about the concepts that should be represented and
about their organization. An additional interest of having

1Web Ontology Language : http://www.w3.org/TR/owl-features



a knowledge representation well organized in an ontol-
ogy, is that it will allows to refine it, if there is a need of
adding new concepts, without modifying all the previews
concepts. To easily support new missions definition, with
new agents description based on the same knowledge rep-
resentation.

The knowledge of an agent can be decomposed into dif-
ferent parts :

1. the description of the physical environment (a map,
the nature of the soil, the atmosphere, the weather,
time ...)

2. information related to the global mission, the robotic
agent is involved in like phases, goals, constraints
etc.

3. the different messages that can be exchanged with
their associated communication protocol or recovery
policy;

4. the description of an agent (physical description,
identification, capacities...).

In the case of cooperation between robotic agents, it is
also important to distinguish between the part of knowl-
edge which is public and shareable, and the part which
should remain private, only dedicated to the use of the
owner agent itself, and which should not be propagated in
the network. This second part may concern sensible data
or restricted functionalities, but also information strongly
related to the specific architecture (hardware or software)
of an agent. This represents additional information that
should be also contained in the knowledge modelling.

A very important part of the description of the agent is
the representation of its capacities, in a service oriented
vision. In other words, how to characterize the services to
allow agents to autonomously understand their achieve-
ments, dependencies, restrictions and the protocol to im-
plement to use them properly. Given the state of the art
and a first analysis, the description of a service could be
structured as following, decomposed in three main parts:

The Service definition is the required information that
is needed by a robotic agent to decide if the service can
be helpful to it. This part contain the Identification of
the service and its provider like for instance ”Monitor-
ingZoneBlimp” for a service on board a blimp giving im-
ages of the zone it flies over. The Type, Physical (uses
actuators, with some kind of physical effect on the en-
vironment or Software (Computing, data storage, relay
communication). The Achievement, that describe what
the service is suppose to do, and the type of return you
can get when it runs like for instance: to give images
at a periodical rate of a portion of its environment. The
Mode defines what kind of interactions is required be-
tween the producer and the consumer: Active – The ser-
vice’s consumer periodically polls the service’s provider
to get feedback about the execution –, Passive – The user
invokes the service and expects a return from the provider

when the goal is achieve – or Mixed mode of both where
the service’s user can polls the service’s provider and/or
wait for the the final return. And the Service visibility, the
service can be public or restricted to certain agents, under
certain conditions and certificate authorization.

The Consumer’s view of the service should answer to
questions like how to invoke and use the service, from the
point of view of the consumer. This include the Initial-
ization and execution constraints, the conditions required
to invoke and run the service (environmental condition,
timelines, agent state...). The Data-flows associated to
the service Inputs (Description of the data consumed by
the service. Data can be messages, arguments...) and
Outputs (Description of the data provided by the service).
The Side effects of the service: which describe what can
possibly occurs and under which conditions. And the
Cases of failures, a list and description of possible fail-
ures of this service. For example a failure of the service
”MonitoringZone” can be ”UnreachableZone”.

The Provider’s view of the service should provide in-
formation on how to execute the service, from the point
of view of the provider. The generic term resource rep-
resents all that is needed to run the service (equipment,
power, function, state, mode etc.). This part includes,
among others, the Service state, current state of a service
(available, unavailable, init, exec, end...) and the Internal
agent requirements, the internal agent function, state or
mode required to execute the service.

4.2. Interaction mechanisms

As presented in figure 1, two main types of interactions
should be managed by the ISIS module.

Internal interactions deal with communications inside
the agent, mainly with the other modules of the control
architecture software like sending requests related to ser-
vice execution (start, stop, resume etc.) or acquiring in-
formation about the state of the robotic agent for updating
ISIS’s knowledge. In the other way, the local control ar-
chitecture depends on ISIS for sending requests to other
robotic agents or getting information from the knowledge
base like for instance getting a list of available services in
the neighborhood to feed its own planning activity.

External interactions deal with communications with
other robotic agents and concern the management of the
knowledge related to the state of the dynamic network
(arrival and departure of agents) and the state of the asso-
ciated services (add/remove service, update service, up-
date environment). It concerns also requests coming from
other agents for service execution (start, stop, monitor
a service) or propagation of propagating control goals
within the network.

All these interactions mechanisms will be described by
attributes like the communication protocols supporting it,
the error management policy etc.



Figure 1. Simplified view of the ISIS Module interactions

5. METHODOLOGY

5.1. From the generic ontology to an ISIS module

The methodology proposed to go from the ontology
knowledge representation to the implementation of an
ISIS module is organized in four steps:

Generic ontology development: First of all an ontol-
ogy will be created to model the global context of the
space exploration missions. This ontology will be centred
around the notion of robotic agents and services offered
and used by the agents. It will include the general knowl-
edge associated (physical environment, robotic agent de-
scription, services description...). This ontology kernel
can be seen as one major output of the standardization
process and is not restricted to a given mission but should
cover as much as possible the whole domain of space ex-
ploration.

Specific ontology adaptation: When a new robotic
agent has to be designed for an already ongoing or a
new mission, a specific instance of this ontology will be
produced to cope with the given mission (environmental
conditions) and centered on the definition of this robotic
agent and of the services it can provide. This instanciated
ontology representing a given robotic agent in its future
environment, will reuse a part of the kernel and exten-
sions or refinements induced by the characteristics of the
robotic agent. For instance at this stage, interfaces with
the embedded software should be defined as well as in-
formation about implementation.

Ontology transcription: This step consists in making
this specific agent ontology suitable for an on-board im-
plementation by integrating it within an ISIS component.
The transcription should use as much as possible auto-
matic code generation to avoid errors. Typically an on-

tology can be dumped in an OWL format (XML like de-
scription), but there are few chances that we will used
directly this format. One of the options is to build a trans-
lator to get a kind of object-oriented representation of the
ontology like it can be done when converting XML files
into objects and develop ad-hoc functions to deal with
that representation. Another option is to use the existing
RoboEarth ROS package which allows to encode an on-
tology in Prolog and perform reasoning tasks based on
this logical model.

ISIS Core implementation: Finally, the ISIS component
should be integrated within the software architecture of
the agent. It will have standards functions in charge of
managing the knowledge implementation, to keep it up to
date and propagate it on the agent network. This module
will be linked to the specific architectures of the agents
using a dedicated interface to remain independent of it
and of its implementation.

It is important to quote that this approach respect the di-
versity of origins for the robotic agents. It only impose
that the same ontology is used as starting point (like any
standard) but does not impose a way to build, for instance,
the embedded software. It requires only that such soft-
ware should be able to accept an ISIS module running as
another function, that will implement standard interfaces
for interactions.

5.2. Ontology development

The ontology development is made with the widely used
tool Protégé2, which allows to encode the ontology in the
OWL format. Existing ontologies structures like those
of the SWAMO and A3ME projects (see section 3) have
been used as inspiration and refined to fit our needs.

An ontology consists in two main parts:

A taxonomy of the concepts which describes what are
the concepts of the domain and allows to hierarchically
organize them.

The relations between the concepts, which represent
another way of linking concepts by describing binary re-
lations like for example a relation hasAgentID linking
the concepts Agent and AgentID or other relations like
hasAgentMode, hasPosition (linked to an instance of the
Coordinate concepts), hasAuthorization... In the same
manner, relations are defined that can be set between the
Services concepts and others concepts like hasServiceID,
hasServiceInput (linked to an instance of a needed data
type to execute the service), hasState...

The figure 2 shows a schematic representation of those
links. In the ontology, it is also possible and useful to set
up groups of relations like AgentProperties and Service-
Properties.

2The Protégé ontology platform - http://protege.stanford.edu/



Figure 2. Schematic representation of relations linking instantiation of concepts in an ontology

5.3. Embedded code

Figure 3. UML representation of a part of the agent
knowledge implementation

The ISIS module is mainly composed of a communica-
tion manager and a knowledge manager. The communi-
cation manager deals with messages sent to and received
from other robotic agents. The knowledge manager keeps
up to date the knowledge base, according to requests
coming from the communication manager or monitor-
ing changes in the local agent configuration (software or
hardware).

As explained in the section 4, the knowledge is decom-
posed in several parts and figure 3 presents a part of
the associated UML model. Some extracts are detailed
here: In the agent description, the physical description
can be seen either implemented as a functional view com-
posed of a list of systems and subsystems describing the
material and functionalities of the robotic platform and
payload, either as a geometrical conception and simula-
tion point of view, with the description of physical parts
and their mechanical constraints and interaction. The
map and environment meta-data (actual and forecasted
weather, ground description, agents, area of interest...)
could be represented using parts of the standards from
Geographic Information Systems (GIS), as those pro-

posed by the Open Geospatial Consortium (OGC) for in-
stance.

An important part of the description of the services is
the representation of the service achievement, actually
it is done by specifying the kind of achievement: Up-
dateKnowledge (variable update, environment modifica-
tion...), ProvideData (send back a data that will not nec-
essarily be used to update a commune knowledge) or
TransmitMessage. Then the relations between the inputs
/ outputs data of the services and the general knowledge
are describe in an ad-hoc manner, for example for the
achievement of a service of exploration, it will be state
that the knowledge of the map in the zone to explore,
given in input of the service, will be updated: ”Knowl-
edge.Map(Service.Input:Zone)”. This achievement de-
scription could also have been done using predicates as in
planning activities, but the use of predicates to describe
the service should be as minimal as possible, because
to understand a new service an agent will then have to
also know the predicates employed, and not only the gen-
eral environment knowledge. The services side-effects
descriptions are based on the same principles.

6. EXPERIMENTAL EVALUATION

The validation of the proposed concepts for the ISIS de-
velopment will be made by simulation. This tool will
be useful to improve and validate the proposed approach,
using realistic scenarios. In a first step, the modelling
of hardware and details of the implementation of various
functions will be limited to the minimum necessary to
obtain realistic simulations.

In a second step more complex situations will be con-
sidered, like simulating environmental constraints (soil,
communication etc.).



6.1. Testing Scenarios

From known missions, described in the literature, and
plausible assumptions about expected evolution of space
vehicles, it is possible to define scenarios involving sev-
eral vehicles. The global context will be the exploration
of a planet where rovers of various sizes and aerial vehi-
cles (VTOL, blimp) will evolve. This context allows us
to consider a wide range of scenarios.

The first and the simplest will be the insertion of a new
vehicle, with new capabilities, in an existing vehicles net-
work (following a spacecraft landing and the arrival of a
new rover in an area).

More complex scenarios will be built around the explo-
ration of a rugged terrain requiring the coordinated use
of different vehicles, like a rover carrying a micro-rover
scout and an blimp. Managing such a phase of explo-
ration needs to implement a control loop within the rover-
blimp-microRover team, where the images produced by
the blimp will be used by the rover to localize the micro-
rover and generate moving commands to it.

Figure 4. An architecture of the simulation system used
to test the ISIS module

6.2. Implementation with ROS

A simulation environment based on the Robot Operating
System (ROS) 3 will be used. In a first version, each
robotic agent will be represented by two ROS nodes (one
for the ISIS component and one for the rest of the control
architecture) and communications will be set between
each ISIS and control architecture nodes, as presented in
figure 4.

Communications between ISIS nodes of different robotic
agents will be established according to mission execu-
tion and the purpose of this simulation is to validate
the knowledge representation, the associated manage-
ment functions and the different service-based interac-
tions mechanisms between the robotic agents.

In future versions, the control architecture could be re-
fined by introducing equipments models (actuators, sen-
sors) and some hierarchical structure in the control soft-
ware organization. If needed, existing planners, like HTN
[NAI+03] or the NASA EUROPA planner [FJM00] will
be used during experimentation.

7. CONCLUSION

The goal of the presented work is to increase the over-
all autonomy of a system composed of several hetero-
geneous robotic agents involved in a space exploration
mission where high level and goal oriented control of the
whole system is required. The concepts and methodol-
ogy described here are generic enough to be applied to
other kind of robotic system where a strong autonomy is
required (search and rescue robots, satellites network...).
A service oriented model of the robotic agents, described
in an ontology, have been presented. The ontology, is
used as a tool to ensure the standardization of the knowl-
edge modelling and thus supports interoperability. Then a
methodogy associated to a development chain will allows
to derive from this model an embedded software module
(ISIS), in charge of direct interactions between agents.
This module can then be implemented in the control ar-
chitecture of the robotic agents. A set of associated inter-
actions models have been studied, to determine the kind
of the messages needed to allow the autonomous interac-
tions and knowledge sharing. The next steps will be to
implement the proposed solution in a simulation environ-
ment, for concepts validation and improvements.

REFERENCES

[ABFT10] S Ambroszkiewicz, W Bartyna,
M Faderewski, and G Terlikowski. Mul-
tirobot system architecture: environment
representation and protocols. Bulletin of
the Polish Academy of Sciences: Technical
Sciences, 58(1):3–13, 2010.

3Robot Operating System (ROS) - www.ros.org



[AEEP11] Erdi Aker, Ahmetcan Erdogan, Esra Er-
dem, and Volkan Patoglu. Housekeep-
ing with Multiple Autonomous Robots:
Knowledge Representation and Automated
Reasoning for a Tightly Integrated Robot
Control Architecture. In Knowledge Rep-
resentation Workshop at IROS 2011, 2011.

[BS01] Kenneth Baclawski and Artan Simeqi. To-
ward Ontology-Based Component Compo-
sition. In 10th OOPSLA Workshop Behav-
ioral Semantics (OOPSLA 2001, pages 1–
11. Citeseer, 2001.

[BS09] D. Brugali and P. Scandurra. Component-
based robotic engineering (part i)[tutorial].
Robotics & Automation Magazine, IEEE,
16(4):84–96, 2009.

[CNTT09] Michael Compton, Holger Neuhaus, Kerry
Taylor, and K.N. Tran. Reasoning about
sensors and compositions. In Proceedings
of the 2nd International Workshop on Se-
mantic Sensor Networks, SSN09, volume
522, pages 33–48, 2009.

[Dep96] Pascal Deplanques. Vers le test de
l’autonomie des robots : une ontologie de
la robotique. PhD thesis, Université Mont-
pellier II, 1996.

[EMA02] J.M. Evans, E.R. Messina, and J.S. Al-
bus. Knowledge engineering for real time
intelligent control. In Intelligent Control,
2002. Proceedings of the 2002 IEEE Inter-
national Symposium on, volume 14, pages
421–427. IEEE, 2002.

[FJM00] Jeremy Frank, A. Jónsson, and Paul Mor-
ris. On reformulating planning as dynamic
constraint satisfaction. Abstraction, Refor-
mulation, and Approximation, pages 271–
280, 2000.

[GF92] MR Genesereth and RE Fikes. Knowledge
interchange format-version 3.0: reference
manual. Number January. 1992.

[He03] Hao He. What Is Service-Oriented Archi-
tecture. O’Reilly - webservices.xml.com,
pages 1–5, 2003.

[HJB08] Arthur Herzog, Daniel Jacobi, and Alejan-
dro Buchmann. A3ME-an Agent-Based
middleware approach for mixed mode en-
vironments. In The Second International
Conference on Mobile Ubiquitous Comput-
ing, Systems, Services and Technologies,
pages 191–196. IEEE, September 2008.

[MP08] B.P.P. Martinet and Bruno Patin. Proteus: A
platform to organise transfer inside french
robotic community. In 3rd National Con-
ference on Control Architectures of Robots
(CAR), 2008.

[NAI+03] Dana Nau, T.C. Au, Okhtay Ilghami, Ugur
Kuter, J.W. Murdock, Dan Wu, and Fusun
Yaman. SHOP2: An HTN planning system.

Journal of Artificial Intelligence Research,
20(1):379–404, 2003.

[PL03] Randall Perrey and Mark Lycett. Service-
oriented architecture. In Symposium on
Applications and the Internet Workshops,
2003.

[PTD06] MP Papazoglou, Paolo Traverso, and
Schahram Dustdar. Service-oriented com-
puting: a research roadmap. In Dagstuhl
Seminar Proceedings, number April, pages
1–29, 2006.

[Sar12] Mehran Sarkarati. How to Do SOA Right?
An SOA Governance Framework For The
ESA Space Situational Awareness Prepara-
tory Programme. In SpaceOps, 2012.

[SB12] Gaëtan Séverac and Eric Bensana. On-
tology to improve autonomous interactions
between space vehicles. In SpaceOps,
2012.

[SCAGR11] Zied Sellami, V. Camps, N. Aussenac-
Gilles, and S. Rougemaille. Ontology
Co-construction with an Adaptive Multi-
Agent System: Principles and Case-Study.
Knowledge Discovery, Knowlege Engineer-
ing and Knowledge Management, pages
237–248, 2011.

[SM05] Craig Schlenoff and Elena Messina. A
robot ontology for urban search and res-
cue. In Proceedings of the 2005 ACM work-
shop on Research in knowledge representa-
tion for autonomous systems, pages 27–34,
New York, New York, USA, 2005. ACM.

[UPWS11] Al Underbrink, Andrew Potter, K Witt, and
Jason Stanley. Modeling sensor web auton-
omy. Aerospace Conference, 2011 IEEE,
2011.

[Wai11] R. Waibel, M. and Beetz, M. and Civera,
J. and D’Andrea, R. and Elfring, J. and
Galvez-Lopez, D. and Haussermann, K.
and Janssen, R. and Montiel, J.M.M. and
Perzylo, A. and Schiessle, B. and Tenorth,
M. and Zweigle, O. and van de Molen-
graft. RoboEarth-A World Wide Web for
Robots. Robotics Automation Magazine,
IEEE, 18(June):69–82, 2011.

[WSS+08] Kenneth J Witt, Jason Stanley, David
Smithbauer, Dan Mandl, Vuong Ly, Al Un-
derbrink, and Mike Metheny. Enabling
Sensor Webs by Utilizing SWAMO for Au-
tonomous Operations. In NASA Earth Sci-
ence Technology Conference (ESTC2008),
2008.


