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ABSTRACT

At present, most of existing contact models for sandy
soils are based on Bekker′s theory. Bekker parameters
are initially assessed through bevameter tests and subse-
quently used in the wheel-soil contact model. This strat-
egy, although commonly accepted for practical reasons,
disregards the substantial difference between bevameter
plate-soil and wheel-soil contact scenario. In this pa-
per an alternative procedure for wheel-soil contact model
parameter estimation is presented. It makes use of be-
vameter tests along with single wheel experiments and
integrates both experimental data within a Bayesian ap-
proach. The results of the Bayesian model updating are
compared with those of a traditional updating procedure
and bevameter measurements.
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soil contact model.

1. INTRODUCTION

Computer simulations of rover mobility on sandy soil
play an important role in extraterrestrial exploration pro-
grams. Past experience has shown that, when driving
on sandy soil, the rover may get stuck for long time
and, in the worst case, be unable to recover its mobility.
One such famous example is closely connected with the
NASA Mars rover Spirit, that got completely stuck after
five years of very successful operations on Mars surface.
Therefore, in the terramechanics community it is well ac-
cepted that a good knowledge of the wheel-soil contact
interacting forces is a prerequisite for both reliable mod-
elling and predictions of realistic behaviour for in-situ op-
erations. At present, most of the existing contact models
for sandy soils are based on Bekker′s theory. However,
several concerns arise when applying Bekker′s approach
to wheel-soil contact models. Bekker parameters, often
assessed through bevameter tests, are proved to be highly
sensitive to the test setup as for instance soil preparation,

plate shape or velocity [1]. Thus, inherent variabilities
in the testing process result in uncertainty about the val-
ues of the Bekker parameters. Furthermore, wheel-soil
contact models employ these parameters regardless of the
fact that the geometrical configuration of the wheel-soil
contact is substantially different from that of a bevameter
test. This gives also rise to doubts about the correctness
of using the same soil parameter values in the soil-wheel
contact model.

In this paper the soil parameters used in a Bekker-based
wheel-soil contact model are assessed by means of be-
vameter and single wheel tests. Exploiting parameter val-
ues tailored to the wheel-soil contact scenario, more reli-
able simulations of the rover mobility are expected. Fur-
thermore, Bayesian model updating introduces a different
perspective with respect to classical deterministic model
updating techniques. Conversely to these latter, that pro-
duce point estimates, Bayesian updating returns a set of
solutions with different levels of plausibility. This allows
the researcher to make more judicious decisions in con-
dition of model and parameter uncertainty.

The paper is structured as follows. In Section 2 theoret-
ical aspects of Bayesian model updating are presented.
In Section 3 the algorithm used to compute the Bayesian
procedure is introduced. Section 4 is devoted to explain-
ing main modelling issues of the soil contact model em-
ployed in this work. A parameter estimation application
case is described in Section 5. Final comments and per-
spectives on future work are given in Section 6.

2. BAYESIAN MODEL UPDATING

Model updating problem aims to estimate parameter val-
ues of a computer model using a limited set of experimen-
tal data. In a deterministic view of the problem, standard
updating procedures search for the model configuration
that produces the best agreement with the available exper-
imental data. Unlikely, in a Bayesian framework a set of
different models are identified as plausible and weighted
according to the probability to explain experimental data.



Bayesian model updating (BMU) has its foundation in the
famous Bayes′ rule stating that

P(A | B) =
P(B | A)P(A)

P(B)
(1)

where P(A) and P(B) denote respectively the total prob-
abilities of two events A and B, while P(A | B) and
P(B | A) denote the two conditional probabilities that the
event A is verified given that the event B is verified and
vice-versa.

In order to read these probabilities in a model updating
context it is initially assumed that a class of modelsM(θ)
of the physical process is available, with θ the model pa-
rameters vector. A specific model is defined once θ is as-
signed. The model response y(θ) is also function of θ. In
general the model response differs from the experimen-
tal response x for a gap ε(θ) that is in turn function of θ.
Thus, the following relation holds

x = y(θ) + ε(θ) (2)

The prediction error ε may be assumed to be a Gaussian
random variable with mean equal to the model response
y(θ) and assigned standard deviation σ. In the absence
of any additional information, the choice of a Gaussian
probability density function (PDF) for ε maximizes the
model uncertainty, according to the principle of maxi-
mum entropy [2]. With this assumption the probability
density of the response x for a given model with parame-
ters θ is

p(x | θ) =
1
√

2πσ
exp

(
−

f (θ)2

2σ2

)
(3)

with
f (θ) = ε(θ) = x − y(θ) (4)

that measures the fitness of the model response to the ex-
perimental response. The PDF p(x | θ), also referred to
as likelihood function, may more generally be written as
p(D | θ), with D denoting now a set of experimental data.
Since the model parameter values are initially unknown,
they can be considered random variables with PDF p(θ).
Thus, the distribution p(θ) represents the guess of the
researcher about the model parameter values before ob-
serving or taking into account experimental data. For this
reason it is also referred to as prior distribution. If prior
information on θ are scarce or non-existent, p(θ) has to
be very wide and allow for any admissible configuration
for θ. Once the experimental data D are available, the
guess on the distribution of θ can be enhanced. Thus, the
prior distribution is corrected to the posterior distribution
p(θ | D) that is the conditional PDF of θ for given exper-
imental data D. Recalling the Bayes′ rule expression for
the continuous random variable, prior and posterior dis-
tribution are related to each other by

p(θ | D) =
p(D | θ)p(θ)

p(D)
(5)

with p(D) representing the normalizing factor for the nu-
meration on the right-hand side that can be calculated as

p(D) =

∫
Θ

p(D | θ)p(θ) dθ (6)

with Θ the domain of θ. If both sides of Equation (5)
are multiplied by dDdθ, then the PDFs can be written
as probabilities and the formula becomes equivalent to
Equation (1). Thus, the following interpretation is given:
when considering experimental data, the probability of
the event that the model parameter values takes the values
θ is proportional to the weighted likelihood of observing
data D with a model with parameters θ and weights given
by the prior PDF p(θ). Importantly, the posterior distri-
bution should not be read in a frequentist sense, i.e. as
the frequency of occurrence of θ for a given dataset D. If
p(θ′ | D) > p(θ′′ | D), it does not mean that θ′ is occur-
ring more frequently than θ′′ but that the event θ = θ′ ex-
plains better experimental evidence and parameter prior
information than the event θ = θ′′. In other words,M(θ′)
is a more plausible model thanM(θ′′). For a comprehen-
sive description of Bayesian approach in model updating
see [2].

3. TRANSITIONAL MARKOV CHAIN MONTE
CARLO

The posterior distribution in Equation (5) may be calcu-
lated employing sampling strategies that ensure the prob-
abilities to asymptotically converge toward correct esti-
mates. However, there are several numerical challenges
related to the usage of sampling-based methods. Firstly,
since p(θ | D) is usually very peaked, then a sampling
approach results effective as long as a large number of
samples stay in the neighbourhood of the important (but
unknown) region of the parameter space. Secondly, accu-
rate calculation of the normalization factor p(D) by crude
Monte Carlo method is, in general, numerically too ex-
pensive and requires an infeasible number of samples.
An efficient approach for Bayesian model updating has
been recently proposed in [3]. The method is an advanced
Markov Chain Monte Carlo (MCMC) algorithm called
Transitional Markov Chain Monte Carlo (TMCMC). Be-
sides the advantage of a traditional MCMC [4] that avoids
the calculation of the normalization factor, in TMCMC a
sequence of Bayes’ problems is solved where the poste-
rior distribution of the former step is used as prior distri-
bution in the next step and the amount of exploited ex-
perimental data is gradually increased. This step by step
approach, resembling the simulated annealing method,
favours the movement of the posterior distribution toward
highly important regions of the parameter space. A de-
tailed description of TMCMC along with its statistical
properties is provided in [3].

4. SOIL CONTACT MODEL

The wheel-soil interaction dynamics implementation is
based on the soil contact model (SCM) [5], which is ded-
icated for multi-body dynamics simulation applications.
It computes the contact forces and torques between an ar-
bitrarily shaped contact body and a soft terrain surface



as function of the body’s motion state. The parameters
are the CAD-like surface descriptions of body and ter-
rain and the relevant soil properties. The aim of the im-
plementation is basically the transformation of Bekker’s
semi-empirical terramechanics theory, which is derived
from 1D/1DOF penetration tests with cylindrical probes,
to general applications using arbitrarily shaped bodies in
3D with six degrees of freedom. The tool provides two
main functionalities, which are performed at each time
integration step of the simulation: the contact dynamics
computation according to Bekker and the plastic soil de-
formation as function of surface penetration kinematics.
Main features of these two functionalities are described
in the following subsections.

4.1. Contact dynamics computation

The first computational step is contact detection. Using a
digital elevation model (DEM) zDEM = f (xDEM , yDEM)
for soil surface description and a cloud of points for rep-
resenting the contact body surface, one can easily com-
pute the sinkage profile from the contact footprint depth
zi at each contact node i of the soil DEM (xi, yi). zi
are calculated by z-buffer and spatial binning techniques,
which are well known in computer graphics. The corre-
sponding contact velocities vi, which consist of compo-
nents vσ,i normal to the footprint surface and components
vτ,i tangential to it, are computed by basic kinematics re-
lationships.

From the knowledge about the footprint shape the effec-
tive contact width is calculated as be f f = 2Axy/Lxy where
Axy is the projected footprint area and Lxy the projected
contour length. A further aspect to be considered is the
centrality of each contact node within the footprint. For
this purpose a sinkage-independent pressure distribution
function γ (xi, yi) is defined. It acts as weighting factor
that amplifies the nominal sinkage-dependent pressure in
central footprint regions and let it drop down to zero at
the border.

In the third step all computations are contact node spe-
cific only. Applying Bekker’s pressure-sinkage relation-
ship the contact pressure pi, equal to the normal stress σi
acting on the wheel, is

pi = γi

(
kc

be f f
+ kφ

)
zn

i (7)

with the soil parameters cohesive modulus kc, frictional
modulus kφ and exponent of sinkage n. Since the appli-
cable shear stress is limited according to Mohr/Coulomb
by τmax,i = c + pi tan Φ with soil cohesion c and angle of
internal soil friction Φ, the actually applied shear stress,

τi = τmax,i

(
1 − exp−|vτ,i |/v0

)
, (8)

is computed by an exponential function of the relative
shear velocity |vτ,i|/v0 with v0 a reference soil velocity pa-
rameter. The discrete contact force ∆Fi can be expressed

using the local normal vector ni, the corresponding tan-
gent vector ti = vτ,i/|vτ,i| and the discrete footprint size
∆Ai associated with a contact node by

∆Fi = (σini + τiti) ∆Ai. (9)

The total contact force F and torque T are finally obtained
by integrals of ∆Fi over all N contact nodes with

F =

N∑
i=1

∆Fi and T =

N∑
i=1

(
(xi, yi, zi)T × ∆Fi

)
. (10)

Figure 1. Visualization of rover locomotion simulation
result using SCM

4.2. Plastic Soil Deformation

In order to represent typical terramechanics phenomena
like sinkage, bulldozing, digging and multi-pass effects
of wheels rolling in line an algorithm for plastic soil de-
formation is implemented in SCM (see example in Fig-
ure 1). It updates the DEM shape in each simulation step
for consecutive application in the contact dynamics com-
putation (see 4.1). Unlike discrete element based algo-
rithms, SCM does not explicitly compute the soil particle
dynamics. This latter is approximated by contact veloc-
ity dependent soil flow fields that determine the displace-
ment of soil volume from the current contact footprint
(decreasing DEM elevation) and the deposition of soil
around the footprint border (rising DEM elevation). An
algorithm for thermal erosion keeps the DEM surface in a
natural shape considering the maximum angle of repose.

5. APPLICATION CASE

The application case consists of the parameter identifica-
tion problem of a rigid-body model using SCM to simu-
late the motion of a wheel on sandy soil. Experimental
results from a single wheel test (SWT) and Bevameter
tests are provided by the DLR Institute of Space Systems
in Bremen.



5.1. Experimental tests

The single wheel test facility allows tests of planetary or
terrestrial rover wheels on different types of soil. The
wheel is driven by a sled through the soil bin (see Fig-
ure 2). The soil bin itself is 300 x 60 x 50 cm, but it
is divided into two parts filled with two different types of
soil. Thus, a total length of 1.5 m is available for test runs.
All relevant locomotion parameters are recorded with 10
Hz frequency during a test run:

• Drawbar pull (0 - 100 N)

• Torque (0 - 30 N)

• Sinkage (maximal sinkage depending on wheel size)

• Wheel load (0 - 200 N)

• Wheel and sled velocity (0 - 100 mm/s)

• Slippage (−100 - 100 % )

Figure 2. Single wheel test bed

The slippage is commanded by differential speeds of the
sled and the wheel. Tests with free wheels are possible as
well.

The wheel tested in the facility is a flexible wheel de-
signed for the ESA ExoMars project. Its geometric prop-
erties are a nominal radius of 125 mm, width of 112 mm
and 12 straight grousers with 9 mm depth. The soil is
a dry quartz sand named WF34. The major chemical
constituent of this sand is SiO2 (99.7%) comprising al-
most exclusively grains of sizes between 180 and 355
µm (80%). Minor constituents are grains of sizes be-
tween 125 and 180 µm. The bulk density has been mea-
sured to be approximately 1400 kg/m3. Bevameter tests
of WF34 measured the soil cohesion c ≈ 0 Pa, friction
angle Φ ≈ 30◦, soil deformation exponent n ≈ 1.1 and
soil deformation modulus k∗ ≈ 107 N/mn+2. k∗ is related
to the Bekker coefficients kc and kφ appearing in Equa-
tion (7) through

k∗ =

(
kc

be f f
+ kφ

)
(11)

5.2. Computer model

A rigid-body model using SCM has been created with
the commercial software SIMPACK to simulate the SWT
(Figure 3). The rigid-body model resembles the exper-

Figure 3. Rigid-body model of the single wheel test

imental set-up except for the flexible wheel that is as-
sumed to be rigid in the simulation. The elastic defor-
mation of the real wheel is accounted for in the simula-
tion by a wheel with increased radius. However, since
the wheel deformation is not measured during the exper-
iment, the equivalent radius of the rigid wheel R is one of
the parameters to identify. Other parameters are the soil
properties kc, kφ, n, Φ used in SCM. Remaining SCM
soil parameters are fixed because they are expected not
to sensibly influence the results. Prior knowledge on the
soil parameter values is provided by the Bevameter tests.
Here, it seems important to stress that for kc and kφ no
nominal value exists as an infinite number of solutions
are possible for given k∗. The epistemic character of the
kc and kφ uncertainty has been considered by choosing
uniform prior PDFs. The same goes for R. For n and
Φ normal distributions have been chosen as prior PDFs.
Proposed prior distributions and possible range of varia-
tion of all tuners are listed in Table 1. In the table header
Par1 and Par2 stand for the mean (minimum value) and
standard deviation (maximum value) of the normal (uni-
form) distribution, respectively, while LB and UB denote
the lower and upper bound of the parameter space.

Param Dim Dist Par1 Par2 LB UB

kc [N/mn+1] uniform −109 109 −109 109

kφ [N/mn+2] uniform 1 1010 1 1010

n [−] normal 1.1 0.2 0.8 2
Φ [◦] normal 30 5.7 11.5 37.3
R [m] uniform 0.125 0.155 0.125 0.155

Table 1. Prior distributions and parameter space defini-
tion.



5.3. Model updating procedures

The SWT data used to update the model parameters are
the drawbar pull force F, the torque at the wheel hub
T and the sinkage of the wheel z at constant slip value
s = 0.2. The analysis of experimental data shows
that after an initial transient, F, T and z get fluctuat-
ing around a mean value with oscillations caused by the
wheel grousers. Since SCM is not able to exactly de-
scribe the transient behaviour, the prediction error (see
Equation (4)) is defined as the difference between the
experimental and numerical signal averages after an as-
signed transient. For the experiments the transient is set
to 40 s while for the numerical data is 20 s for F and
T and 1 s for z. Simulated time is 50 s while real experi-
mental time is about 180 s. Referring to a generic dataset,
Figure 4 illustrates the filtered experimental and numeri-
cal data and the resultant data averages (thick solid lines)
used in BMU. The shaded areas in pale blue and red high-
light the time interval over which the signal is averaged
for experimental and numerical data, respectively. The
diagrams show only first 100 s of experimental signal.
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Figure 4. Filtered signals of experimental and numerical
data (for a correct interpretation of this figure see the
electronic version of the paper).

The likelihood function of Equation (5) is here defined as

p(D | θ) =

3∏
i=1

p(Di | θ) (12)

with

p(D1 | θ) =
1
√

2π
exp

− (F̄exp − F̄num)2

2σ2
F

 (13)

p(D2 | θ) =
1
√

2π
exp

− (T̄ exp − T̄ num)2

2σ2
T

 (14)

p(D3 | θ) =
1
√

2π
exp

(
−

(z̄exp − z̄num)2

2σ2
z

)
(15)

and •̄exp, •̄num and σ• being respectively the experimen-
tal, numerical mean and prediction error standard devia-
tion of the generic physical quantity •. The prediction er-
ror standard deviations are assumed to be constant values
and play here the role of normalization factors to account
for different order of magnitudes for the physical quan-
tities. But, their value affects also the prediction error
distribution, as will be discussed later.

Bayesian model updating has been compared with a de-
terministic parameter identification procedure that solves
the inverse problem by a genetic algorithm (GA) opti-
mization [6]. In this case the optimization searches for
the global minimum of a defined objective function g(θ)
over the assigned parameter space. The objective func-
tion is strictly related to the likelihood function of the
Bayesian approach being

g(θ) = log p(D | θ) (16)

where p(D | θ) is defined in Equation (12).

5.4. Analysis of results

Both BMU and GA procedures are sequential algorithms
that converge to a solution after an established number of
steps. The converging error diagram for GA optimization
is shown in the top diagram of Figure 5, while the sam-
ples of the initial, intermediate and final step of TMCMC
are shown in the bottom scatter plot of Figure 5 in terms
of n and Φ model parameters. In this latter plot it is vis-
ible that the initial prior sampling region is progressively
shrunk and moved toward more probable parameter con-
figurations by the random walk of TMCMC. At the end
of the procedure almost all samples are clustered within
a small region with n ≈ 1.2 and Φ ≈ 11.5◦.

As opposed to GA optimization, that yields point esti-
mates, BMU supplies a collection model configurations
with their corresponding level of plausibility. In Figure 6
the two-variate posterior densities are plotted as contour
plots for kc-kφ, n-Φ and n-R pairs via the constant window
kernel density estimators method [7]. The plots show also
the TMCMC sample with maximum likelihood (or min-
imum prediction error), the GA optimum and, whenever
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possible, bevameter measurements. With a slight abuse
of interpretation, the sample with maximum p(D | θ) is
here denoted by MLE (maximum likelihood estimator).
MLE is always located very close to the posterior PDF
mode. This is a positive fact meaning that the value of
θ which minimizes the error is not a spurious peak but
within the region of highly plausible models. In agree-
ment with BMU, the kφ, n and Φ identified by GA lie in-
side the region with very high posterior PDF values. On
the other hand, kc and R estimates are substantially away
from the important posterior PDF regions. This is most
likely due to the minor influence that these parameters
have on the measured model responses.

It may convey also much insight about the SCM be-
haviour the comparison between numerical results and
experimental bevameter measurements. In the plot on the
top of Figure 6 the dashed line marks the kc-kφ combi-
nations for which k∗ = 107 N/mn+2 and setting be f f
to the average value from the simulations. As visible,
the dashed line passes through high values of the poste-
rior PDF. Moreover, the kc-kφ negative correlation is also
caught by the posterior distribution. Both facts point out a
sufficient experimental/numerical correlation. As far as n
and Φ is concerned, the plot in Figure 6 shows that, while
for n again a good experimental/numerical agreement ex-
ists, for Φ all numerical solutions concentrate in a region
with sensibly smaller values than the bevameter measure-
ment. Although the causes of such a strong disagreement
are not clear yet, at the moment this result advices the
researcher against an indiscriminate use in SCM of soil
parameter estimates coming from bevameter tests.
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Figure 6. BMU and GA estimated parameters along with
bevameter measurements.

The comparison of the F, T and z filtered time-histories
for MLE and GA solution with the filtered experimental
signal from SWT is presented in Figure 7. The plots show
a very good experimental/numerical agreement in terms
of signal averages (see the small diagrams on the right)
and amplitude of fluctuation. Also the period behaviour
due to the grousers is caught in the numerical solution.

BMU may provide also information about the prediction
error variability. Figure 8 presents the calculated abso-
lute prediction error PDFs of F, T and z built via kernel
estimator with normal smoothers and optimal width for
normal densities on a positive support. Vertical blue, red
and green dashed lines are also drawn to mark the ab-
solute prediction error mean, the error of the MLE solu-
tion and the error of the GA solution, respectively. These
plots point out two important results. The first is qualita-
tive and says that the prediction error yielded by MLE
(or GA) is sensibly different from that expected when
considering model uncertainty. The second is quantita-
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Figure 7. Experimental-numerical correlation for MLE
and GA solution (for a correct interpretation of this figure
see the electronic version of the paper).

tive and says that, globally, the prediction error is sig-
nificantly larger than the MLE (or GA) estimate. In this
regards, it seems important to note that the width of the
error PDFs is dependent on the error standard deviation σ
chosen for Equation (13). Current values are σF = 10 N,
σT = 20 Nm and σz = 0.01 m that are chosen consid-
erably large as to reduce the number of TMCMC sam-
ples. Indeed, due to statistical properties of TMCMC, the
number of required simulations, needed to achieve reli-
able statistic, increases accordingly with the number of
TMCMC samples. Conveniently, prediction error stan-
dard deviations may also be included into the set of pa-
rameters to estimate. Nevertheless, also this set-up would
entail an augmented number of simulations that could not
be afforded in the present work.
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Figure 8. Prediction error distributions MLE and GA
point estimates (for a correct interpretation of this figure
see the electronic version of the paper).

6. CONCLUSIONS

Conversely to traditional deterministic model updating
that yields parameter point estimates, Bayesian frame-
work gives a more robust approach by identifying a set
of high plausible models. If integrating this information
into a decision theory framework that minimizes the ex-
pected loss, then the full power of the Bayesian approach
can be exploited. Furthermore, since handling flow of in-
formation is made in a very natural way, it is expected
that Bayesian approach could be employed efficiently for
on-time parameter estimation. Yet, by calculating the ev-
idence distribution, Bayesian approach may be useful for
model comparison and selection [8]. On the downside,
Bayesian analyses generally call for high computer per-
formances. In this work, parallel computing technique
and efficient MCMC methods have been adopted. Nev-
ertheless, the procedure, run on a machine equipped with



a 8-core and 2.8 GHz CPU, took several hours and re-
quired a number of simulations significantly larger than
a deterministic approach. In this regard metamodelling
techniques can be resorted to sensibly speed up the anal-
ysis, as proposed for instance by [9] in the context of a
structural dynamic problem.

Focusing on the values of Bekker parameters identified
by both of the updating procedures, it turns out that, in
general, the updated estimates are in agreement with the
bevameter measurements. An exception is the friction an-
gle whose estimates are sensibly smaller. Additional sim-
ulations evidenced that for Φ ≈ 30◦ the numerical values
for F and T are constantly pretty higher than the exper-
imental values. This outcome suggests to pay particular
attention when using bevameter data in SCM.
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