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ABSTRACT 

In the early development phase of planetary exploration 
rovers, simulation is an attractive alternative to rover 
testing in order to access locomotion performances and 
to provide relevant inputs for sizing the mechanical and 
electrical sub-systems. Based on previous publications 
by RUAG, this paper presents the architecture of the 
Rover Parametric Analytical Tool (RPAT), a modular 
simulation environment which provides 3-D simulation 
capabilities for rover motion sequences. An enhanced 
quasi-static local-force-equilibrium approach, 
automated database-interfaces, a Horn-method based 
Odometry-module and Digital Elevation Maps allow the 
significantly faster-than-real-time parametric analysis 
of nearly arbitrary wheeled locomotion subsystems (e.g. 
ExoMars, NEXT, NASA MER/MSL). In contrast to 
existing approaches, the paradigm is to primarily rely 
on wheel-level testing to guarantee precise wheel-soil 
interaction information. The comparison of RPAT 
simulation results with ExoMars LSS breadboard test 
campaign data validates the overall theoretical 
approach and emphasizes RPAT’s potential to reduce 
rover development costs by decreasing the dependence 
on breadboards.  
 
1 INTRODUCTION 

The central problem in the locomotion subsystem 
design process is that it “remains a topic of ad-hoc 
speculation and is commonly pursued in a way that 
lacks rationalization” [1]. New designs often draw upon 
“knowledge of precedent robotic and conventional 
vehicles, intuition and experience” [1] and subsequently 
depend on building a costly breadboard and performing 
a comprehensive test campaign to verify the design [2]. 
Breadboards are also rarely able to take into account the 
frequent design changes implemented during the 
iterative LSS design process. This breadboard-based 
approach results in high rover development costs and 
can thus potentially endanger mission feasibility. 
 

Model-based design constitutes a promising alternative 
to today’s mostly testing-based rover development 
process [3,4]. Two main types of simulation types are 
commonly used. Multi body simulation (MBS) tools [3] 
allow a highly precise modeling of the rover dynamics 
and therefore mostly require comprehensive inputs. 
Their complexity tends to prohibit a quick parametric 
analysis (e.g. of the rover dimensions which are often 
represented by a detailed CAD model) and results in 
low simulation speeds. In contrast, quasi-static 
simulation tools [5,6] trade off some precision for 
simplicity and higher simulation speeds. Their ability to 
efficiently simulate and compare various rover 
configurations, e.g. for rover dimensioning or concept 
selection, make them good choices for the early rover 
design phases. 
  
2 ROVER SIMULATION TOOL DESCRIPTION 

This paper presents the architecture and theory of a 
quasi-static simulation environment, the Rover 
Parametric Analytical Tool (RPAT). RPAT allows to 
either use high-fidelity experimental wheel performance 
data or wheel-soil-interaction models to accurately 
model wheel-soft-soil interaction. In contrast, similar 
simulation tools such as the quasi-static tool by Krebs et 
al. [5] did not support soft soils and flexible wheels at 
all, and the RCET quasi-static tools [2] are based on a 
wheel-soft-soil interaction model with limited accuracy 
especially at high slip [6], which decreases simulation 
accuracy e.g. for step-shape obstacle tests. RPAT is 
based on the application developed in [7], but improves 
upon it by adding full real time rover simulation on 3-D 
terrain through the methods described in this section. 
 
2.1 Overview 

The Rover Parametric Analytical Tool supports the 
preliminary design of rover locomotion subsystems by 
performing computationally-efficient 3-D simulations of 
a rover motion, thereby allowing a quick parametric 
analysis of various rover configurations.  The simulation 
outputs  



 

 
• Rover velocity  and slip 
• Rover Drawbar Pull 
• Wheel forces  
• Wheel torques  
• Wheel sinkage  
• Rover power and energy consumed 

 
with respect to time. The results can then be used to 
dimension the key rover components such as drive 
motors or the locomotion-dependent part of the solar 
cell area.  
 

 
Figure 1: Analysis window of the RPAT GUI 

 
The Windows GUI allows the precise setup of a 
simulation (rover type, terrain type, etc.) as well as an 
easy analysis of the simulation outputs (Figure 1). The 
rover motion sequence can also be illustrated using an 
OGRE-based 3-D visualization (Figure 2). 
 

 
Figure 2: The OGRE based 3-D visualization showing a motion 

sequence of the ExoMars rover which was simulated 
with RPAT. 

 

2.2 Design Characteristics and Features 

To differentiate itself from existing simulation 
environments, RPAT is positioned to have more 
precision than usual preliminary design tools and higher 
flexibility and simulation speed than MBS tools. The 
main RPAT characteristics are therefore: 
 
• Full rover-level simulation from wheel-level data 

Wheel-level data from either wheel testing or an 
existing wheel-soil interaction module (cp. Figure 
3) is sufficient to perform full rover-level 
simulations with RPAT. Rover-level testing (e.g. 
with breadboards) is not necessary.  

• High accuracy through use of wheel test data  
The possibility to use actual wheel-level test data 
(cp. section 3.2.2) such as DP, T, R and sinkage vs. 
slip curves allows RPAT to efficiently yet 
accurately represent soft-soil interaction and thus 
wheel-level motion.  

• Simulation speed and system engineering 
approach for parametric rover analysis 
The quasi-static, local-force-equilibrium approach 
and the Odometry-module result in high simulation 
speeds of up to 150x real-time (on a standard Core 
2 Duo PC) and good rover-level simulation 
accuracy suitable for LSS preliminary design and 
system engineering.  
 

Additional features are: 
 
• Support of arbitrary terrains (step-shape, slope, 3-D 

terrain, etc.) through .bmp Digital Elevation Maps 
• Support of arbitrary rover geometries through the 

generic Odometry-module and databases. Currently 
implemented Rover-LSS are ExoMars, NEXT and 
NASA MER/MSL. 

• User-friendly Windows GUI and analysis tools 
• 3-D visualization via OGRE interface 
• Modularity 
• Compatibility with other RUAG software 
 
2.3 Architecture and external interfaces 

The architecture of the RUAG rover system engineering 
environment is shown in Figure 3. The wheel-level data 
management is performed by the Wheel Parametric 
Analytical Tool (WPAT). To generate wheel-
performance (DP, T, R and sinkage vs. slip) curves, 
WPAT requires wheel-level tests as described in [8] or 
an existing wheel-soil interaction model e.g. as 
presented in [6]. With the WPAT-processed wheel-level 
test data, RPAT then performs the whole rover-level 
simulation. Terrain information is loaded from .bmp 
Digital Elevation Maps, while soil information is taken 
from similar .bmp soil maps. The rover component 
geometry and topology is dynamically loaded from an 
MS-ACCESS database, thus allowing the quick setup 



 

and parametric analysis of various locomotion 
subsystems. 
 

 
Figure 3: RUAG rover system engineering environment 

 
3 DETAILED SIMULATION THEORY  

3.1 Simulation Architecture 

The Rover Parametric Analytical Tool is an object-
oriented C++ application which is separated into four 
modules (Table 1). 
 

Module Main function 
Rover Rover modeling and simulation. 

Sub-modules: Geometry, Positioning, Static, 
Wheel, Control, Actuator, 3-D Odometry 

Terrain Provision of terrain data (height, soil). 
Sub-modules: Terrain-DEM, Wheel-DEM 

Wheel Provision of wheel performance data (e.g. DP 
vs. slip) from WPAT 

Actuator Modeling of the rover actuators 
Table 1: RPAT modules and sub modules 

RPAT coordinates the cooperation of the modules, with 
the Rover-module performing the majority of the 
simulation work (Figure 4). At the beginning of each 
iteration, the Terrain-module (section 3.2.4) supplies the 
Rover-module with the wheel heights based on the 
current x,y- position of the rover. The Positioning-sub-
module then recalculates the new rover altitude and 
orientation on the map. Based on the rover- and wheel-
orientations, the Static-sub-module calculates the loads 
and subsequently the necessary traction- or Drawbar-
Pull forces per wheel (section 3.2.1). As described in 
[8], the Wheel-module subsequently retrieves the slip at 
each wheel from the respective DP such that the 
Odometry-module can update the x,y-position and 
orientation of the rover by combining the wheel-level 
slips (section 3.2.3). The Wheel-module also determines 
the necessary motor torques, thereby enabling the 
Actuator-module to determine the Rover-LSS power 
consumption. The updated position and orientation of 
the rover is finally used as an initial value in the next 
iteration. 
 

 
Figure 4: RPAT simulation architecture 

 
3.2 Detailed Module Description 

Of the RPAT modules in Table 1, the Geometry-sub-
module and the Positioning-sub-module are based on 
previous RUAG tools and are explained in more detail 
in [7]. Further information on the Control- and 
Actuator-modules can be found in [9].  
 
The main innovation in RPAT comes from the 
combination of the quasi-static local-force-equilibrium 
approach with the novel wheel motion calculation in the 
Wheel-module, the fusion of wheel-level motion to 
rover-level motion in the Odometry-module and the 
wheel-terrain placement in the Terrain-module. A 
detailed description of the theory behind these modules 
is given below. 

3.2.1 Static-module: Force Calculation via a „quasi-
static, local-force-equilibrium“ Approach 

 
In common simulation tools (e.g. of the MBS-type) the 
rover motion is determined using the Newton-Euler-
Equation, which for the 1-D can be written as 
 

 = ⋅  (1) 

 
. Due to the dynamic term, this approach may however 
cause significant numerical instabilities. Given that 
typical planetary exploration rover velocities are 
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Figure 7: Calculation of the rover motion from wheel velocities 

in the Odometry-module 

3.2.4 Terrain-module: 

The purpose of the Terrain-module, or more correctly 
the Terrain-and-Wheel-DEM-Module, is to determine 
the height , contact angle  and the soil-ID of 
each rover wheel at its current position. The terrain 
height is represented by a x,y- Digital Elevation Map 
(DEM) which can be loaded from an easy-to-create 
RGB or greyscale bitmap-file. In comparison to the 1-D 
approach presented in [5], RPAT therefore allows to 
simulate rover motion on complex real-world terrains 
such as actual Martian terrain. A similar 2-D Soil-Map 
assigns the soil-ID (e.g. representing Martian sand, 
Lunar soil or rocks), while a 2-D multipass-map always 
contains the current multipass value (0,1,2) of a certain 
x,y terrain position. 
 
In contrast to a Rover placement approach which 
iteratively places the whole rover on the terrain, RPAT 
follows a Single Wheel Placement approach, meaning 
that only after ,  has been determined separately for 
each wheel the new rover angles are calculated.  is 
determined by simply scanning the whole wheel-space 
(represented by a wheel-DEM, Figure 8) for the 
maximum accumulated height of the Terrain-DEM, the 
slope and the Wheel-DEM, i.e. 
 ( , ) = + +  (5) , = max	(z(x + Δx, y 	+ Δy)) (6) 

. 
The advantage of the described single-wheel-placement 
approach is that it is more rover-generic because the 
only rover-specific part is to determine the new rover 
angles from the wheel heights ,  e.g. via the 
equations given in [7]. The approach is platform 
independent and proved to be 10x faster than a rover-
level-placement approach used in other RUAG rover 
simulation tools. However, a disadvantage is the 
handling of terrain-DEM discontinuities such as step-
shape obstacles, which can be compensated for example 
via a Kalman-filter as described in [9]. 

 
Figure 8: Visualization of the wheel height calculation process. 

Shown are the Terrain-DEM, Wheel-DEM and the 
height due to the slope of the terrain. 

4 CORRELATION AND VALIDATION 

4.1 Correlation with EXM-BB2 test data 

To validate the RUAG system engineering environment, 
the RPAT results are compared to the experimental test 
results obtained with the ExoMars LSS breadboard 2 
(BB2). The test cases are taken from the ExoMars phase 
B1 and B2 test campaigns [11,12,13] as well as own 
tests performed at the RUAG Space test facilities. 
 
The summarized results in Table 2 show a very good 
accuracy for the rover position, velocity, orientation, 
average motor torques and rover power consumption, 
with deviations mostly ranging between 3-15%. For the 
maximum motor torques, deviations range up to 34% in 
the relevant test cases. Detailed explanations for this 
behavior are given below and in [9]. 

4.1.1 Drawbar Pull Tests 

The drawbar pull test results (Figure 9) correlate well 
and thereby confirm the accuracy of the wheel-level 
data. The average DP error is 7% and is primarily 
caused by the regions with high test data uncertainty, 
i.e. the very low and very high slip regions. Average 
wheel torque errors are 16% and are partly caused by 
the torque sensor installation in the experiment [9]. 
 

 
Figure 9: Drawbar pull for the ExoMars BB2 on ES-3. For the 

simulation, wheel data from [8] was used. 
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7 CONCLUSION 

The RPAT approach of using a quasi-static local-force-
equilibrium method and fusing wheel-level test data to 
estimate the motion on rover level has been successfully 
validated. While the use of actual wheel-level data 
allows for high accuracy, the local force equilibrium 
approach avoids the complexities of a full rover-level 
force calculation and therefore allows a very time-
efficient simulation. For the often “intuition and 
experience”-based [1] rover preliminary design phase - 
and also in comparison to similar simulation tools - the 
accuracy of RPAT is very satisfactory. However, a 
local-force-equilibrium approach is only a simple 
approximation of reality with the inherent limitation that 
internal forces are neglected. A high-accuracy 
simulation tool used in the later phases of a rover 
project may thus be better served with implementing a 
multi-body-simulation approach for force calculation 
and combining it with other RPAT technologies such as 
the reliance on precise wheel-level test data for motion 
determination. For a preliminary design and system 
engineering tool however, the RPAT quasi-static local-
force-equilibrium approach is a very beneficial and 
unique compromise between flexibility, speed and 
accuracy.  
 
All in all, the Rover Parametric Analytical Tool allows 
an efficient analysis and comparison of a wide range of 
rover configurations and is therefore a powerful tool for 
LSS concept selection and LSS component 
dimensioning. It has the potential to significantly 
decrease the dependence on rover breadboards, reduce 
the need for extensive test campaigns and consequently 
eventually reduce the cost and time necessary for the 
preliminary design of future planetary rovers. 
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