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Abstract

This paper presents an algorithm that improves pre-
vious efforts to incorporate ecological models of forag-
ing into automating exoplanetary exploration. The new
budgeting strategy is an improvement over previous ap-
proaches in that it attempts to exhaust its sampling budget
while exploring. Simulated experiments demonstrate that
the budgeting algorithm is also a better approach for small
budget sizes thank more traditional approaches based on
principles from the design of experiments.

1 Introduction

As the scope of planetary exploration increases, so
to does the demand on human scientists to direct explor-
ing robots. Compounding this demand are limitations in
bandwidth and delays in communication that hinder the
ability to communicate with and control exploring robots.
Time, energy, and resources impose limits on how many
times robots can collect samples. Consequently samples
must be deployed in a way that maximizes information
without knowledge of what opportunities lie ahead.

The objective of this work is to provide a decision
making algorithm for trading off currently available sam-
pling opportunities against future sampling opportunities.
With such an algorithm robots may choose whether to
sample or not without human oversight. This research
simulates a robot following a pre-defined path repeatedly
making the decision to either take a sample or continue to
the next sampling opportunity.

Determining where an explorer should distribute sam-
ples is a problem of sequentially selecting experiments, or
actions, that increase the knowledge of the world. Choos-
ing maximally informative next actions is a problem of
design of experiments or active learning. More specif-
ically robots face sequential experiment selection where
after every action the value of possible actions can change
and there is a limited sampling budget.

Traditional strategies for selecting informative actions
assume all sampling actions are possible at any time. In
contrast, planetary exploration missions resemble a se-
quence of encounters where only a subset of sampling
actions are possible and no knowledge of future encoun-
ters is available. Planetary exploration resembles animals

foraging, having to make the decision either to consume
available resources or to continue searching for more valu-
able resources. Similarly robots exploring long distances
in unfamiliar areas do not know how many sampling op-
portunities remain. Further there is no guarantee that
any sampling opportunities will be repeated during explo-
ration.

This work proposes that budget aware sampling will
improve upon the foraging strategy presented in Furlong
and Wettergreen[10].

This paper introduces a new algorithm that combines
optimal foraging theory [6],[7] and multi-armed bandit lit-
erature [13],[12] to enable robots to make the decision be-
tween stopping and sampling or continuing to explore the
environment. Literature on sequential experiment selec-
tion gives a means for valuing different sampling oppor-
tunities. Optimal foraging theory yields a mechanism for
making the decision between currently available oppor-
tunities and uncertain future opportunities. Previous ap-
proaches to science autonomy have employed design of
experiments techniques to set paths for exploration [19],
they do not consider the results of sampling activities
when planning future activities.

This paper presents the results of simulating explo-
ration along a transect – a path across terrain – charac-
terizing the abundance of life in subsurface habitats, the
objective of the mission of Zoe, the robot used in the Life
in the Atacama Desert project. The experiment tests three
different sampling strategies on multiple simulated tran-
sects and compares the average performance. In these ex-
periments we determined that the new budgeting strategy
has improved performance over the foraging strategy of
[10].

Reliably prioritizing sampling opportunities frees
robots from human specified exploration mission priori-
ties. Freeing exploring agents from the throughput of hu-
man decision makers, especially in increasingly remote
locations, can improve the scientific yield of robotic ex-
ploration missions.

2 BACKGROUND

Previous approaches to planetary scale science au-
tonomy fall down in two respects. Firstly, these ap-
proaches model scientific exploration as a standard explo-



ration/exploitation problem. A model that does not nec-
essarily hold for planetary exploration. Secondly, they
do not use the output of the scientific measurements to
improve how the robots select between sampling actions.
For stationary processes experiment design dictates that
the optimal set of experiments can be determined without
ever knowing the results of those experiments [17].

2.1 Sequential Action Selection
Sequential experiment selection, a type of active

learning, is addressed in the multi-armed bandit litera-
ture. The multi-armed bandit was introduced in [13] as a
means of sequentially selecting which experiments to con-
duct with a limited budget. In Robbins’ work [13] select-
ing experiments is modelled on determining the payouts
of one-armed bandit machines – each machine represents
a different experiment. The player has a fixed sampling
budget and has to sequentially choose which machine to
play, trading off exploiting the expected rewards for the
different arms and exploring the different arms learning
more accurately the payouts of those arms.

Lai et al. [12] introduced the Upper Confidence
Bound (UCB) rule which values sampling opportunities
with the sum of the expected reward for a sampling oppor-
tunity and a term that tries to balance the samples amongst
all types of sampling opportunities.

Value = E [Ri] +

√
2 ln ti

T

Where Ri is the reward for sampling opportunity i, ti
is the number of times i has been sampled, and T is the
total number of samples distributed. Work on proving the
bounds of this algorithm has been continued by Agarawal
[1] and Auer and Ortner[3].

Other approaches to the bandit problem use reward
plus the uncertainty of that reward to indicate value. We
see this in the work of Burnetas and Katehakis [5] and
Auer [2]. This is a sentiment seen in other work, like
the optimistic planners of Jurgen Schmidhuber’s group
[15, 14, 16, 18]. They choose actions that maximize the
expected information gain with respect to some model
they are learning. The most valuable actions are the
ones that result in the greatest shift in the distribution the
learner is building.

Balcan [4] presents a method for learning classifiers
by requesting samples from the input space with the great-
est classification error. Classification error and uncertainty
in function value are fungible quantities in this case. An
analogy can be drawn between the classifiers used in [4]
and the bandit arms used by Auer and Ortner[3].

Thompson and Wettergreen [19] maximize diversity
of collected samples by using mutual information sam-
pling. This approach ensures diversity in the collected
sample set, an act that reduces uncertainty in the input

space of a function. Neither mutual information nor max-
imum entropy sampling methods, when used with station-
ary Gaussian processes, take into account the dependent
variable when selecting samples.

Sequential experiment selection values actions by a
combination of reward and uncertainty in that reward.
Since the mission of exploration is learning the reward
is the reduction in uncertainty by taking actions. Seek-
ing uncertainty is a useful way to value options presented
to a learning agent but it does not address the explorer’s
problem of either giving up on a sampling opportunity or
searching for better opportunities. Further it is not guar-
anteed that sampling opportunities can be accessed at no
cost, an assumption commonly made when querying an
oracle.

2.2 Exploration as Foraging
Active learning assumes an oracle and as such does

not map well to exploration in unknown environments. In
approaches like those of Robbins [13] or Balcan [4] the
agent conducting experiments has at any time the oppor-
tunity to sample random variable they are characterizing.
This is not the case in planetary exploration, we can only
sample from those random variables that are present as
robots follow their trajectories. The inaccuracy of the or-
acle model has been previously identified by Donmez and
Carbonell [8].

Foraging theory provides a way to make the deci-
sion to stay or to go withouth knowledge of future op-
portunities. This stands in contrast to the standard explo-
ration/exploitation problem choosing from known sam-
pling opportunities.

Optimal foraging strategies devised by Charnov [7]
describe how predators hunt in different geographic re-
gions with different levels of resources. Animals make
the decision to forage by comparing the value of the op-
tions it has in front of it to the expected value of what it
may obtain by searching for better options [11], less the
cost of conducting a search.

Kolling et al [11] found that humans make forag-
ing decisions based on the arithmetic mean of the esti-
mated values of the options they are presented with and
the options that remain in the surrounding environment.
From foraging literature we learn to compute the value
of searching in an environment by taking the arithmetic
mean of what is thought to be in that environment. The
decision rule to stay or leave is a comparison between the
value of the current opportunity and the expected value of
the environment.

Optimal foragers considering three things when
choosing to leave a resource: Expected value of the cur-
rent opportunity, the expected value of the rest of the en-
vironment, and the cost of searching for new opportuni-
ties [7],[11]. To adapt foraging to exploration we need to



answer the question: What is the value of an option pre-
sented to the explorer? To answer that question we look
to active learning.

Previous work by the authors [10] addressed the prob-
lem of exploring along a transect by employing techniques
from Foraging Theory. However that work did not address
the fact that the sampler had a limited budget. Agents in
that work did not expend all of their samples for large bud-
gets, a problem this research addresses.

The strategy presented by Ferri et al. made a com-
parison between the perceived value of the available sam-
pling opportunity and an arbitrary function of the remain-
ing number of sampling opportunities [9]. The value of
a sampling opportunity was determined by a fixed thresh-
old and the proclivity for spending samples was likewise
determined by an arbitrary constant. In contrast this work
employs an information theoretic measure of opportunity
value and a principled measure to determine when to ex-
pend a sample.

The prior work yields two observations. Firstly, for-
aging, a better model for planetary exploration, requires a
measure of value of the sampling opportunities available
to the exploring agent. Secondly, active learning uses un-
certainty – in both input and output space of a function –
to value potential exploration opportunities. What follows
next is a method for exploring that reflects the limitations
of a planetary setting and incorporates the result of sam-
pling operations into decision making processes.

3 METHOD

There are two experiments discussed in this paper.
The first compares the efficacy of the new decision making
algorithm against results from previous work. The sec-
ond experiment examines the sensitivity of the new bud-
geting algorithm to incorrectly estimating the number of
sampling opportunities on a transect.

The first experiment compares the proposed Budget-
ing strategy on a simulated transect against the algorithms
tested in [10]. The execution of the transect is simulated
by repeatedly making the decision between taking the cur-
rent sampling opportunity and searching for more infor-
mative sampling opportunities. The robot is assumed to
be travelling a predefined path without backtracking, so
the robot cannot travel back to previous sampling opportu-
nities. This scenario mirrors situations where foreknowl-
edge of the area to be explored is not available, for exam-
ple in underground, undersea, or planetary settings.

The budgeting algorithm depends on knowing how
many sampling opportunities are available on a transect.
In unknown environments the number of sampling oppor-
tunities must be estimated. The second experiment deter-
mines the sensitivity of the budgeting algorithm to error
in the estimated number of sampling opportunities.

3.1 Experiment Set Up
Transects are approximated by presenting the agent

with 1000 sampling opportunities. Each sampling oppor-
tunity is presented as one of N random variables st = i
and a value vi,t that is revealed only if the agent chooses
to sample the random variable. Where i ∈ {1, . . . ,N} in-
dicates the random variable being presented on the t-th
presentation. In this experiment there were N = 12 ran-
dom variables. If the random variables represent different
classes of soil then vi,t would be the density of subsurface
microbial life in soil type i on the t-th sampling opportu-
nity.

The first experiment has two conditions. In the first
the probability of a random variable being presented is
uniform across the number of random variables. In the
second condition the probability of a random variable be-
ing presented follows the distribution in Figure 1. This
distribution has one dominating random variable to model
an environment with one dominating type of material to
sample from. The dominating random variable represents
the dominating material in the environment.
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Figure 1. The probability of presentation is
the probability that a sampling opportu-
nity for a random variable will be pre-
sented to the robot scientist in an en-
counter. The probabilities here are for
the second experiment condition.

The success of the strategies on a transect is the er-
ror between the true and learned cumulative distribution
functions (CDFs) averaged over all the random variables.
The error function used is the sum of the absolute value of
the difference between the empirical CDF learned by the
strategy and the true CDF of the random variable. Each
agent was tested on thirty different transects and their av-
erage performance is compared.
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Figure 2. The value of a sampling action
is the shift in the empirical distribution
function due to adding a new new data
point. Larger shifts in the distribution
imply greater uncertainty in that distri-
bution and thus more valuable opportu-
nities.

The second experiment repeats the second condition
of the first experiment but in this case only the budgeting
strategy is used. The strategy is forced to have an inac-
curate estimate of how many sampling opportunities ex-
ist on the transect. The performance is measured with
±10%,±20%,±30% error in the estimate of total sam-
pling opportunities.

3.2 Option Value
The value of a random variable is the arithmetic mean

of the reward history for sampling that variable. The sam-
pling reward is the shift in the empirical distribution func-
tion caused by taking a sample as seen in Figure 2, this is
a measure of uncertainty in the learned distribution. Re-
ward is computed by taking the sum of the absolute value
of the error between the CDF before and after a sampling
update, as described in Algorithm 1. The value of the ran-
dom variable should decrease as it is sampled more.

3.3 Sampling Strategies
In this work we compare three different algorithms.

The first strategy do not consider the result of the sam-
pling action or the effect it has on distributions they are
learning. The Uniform sampling strategy is a baseline for
comparison to the Foraging and new Budgeting strategies.
The details of these strategies are given below.

Algorithm 1 Option valuing.
function init value

RandomVars← ∅
Count ← ()
S amples← ()

end function
function update value(st, vt)

if st < RandomVars then
RandomVars← RandomVars ∪ st

Countst ← 0
end if
Countst ← Countst + 1
S amples′st

←
(
S amplesst , vt

)
Fold (z)← empirical dist(S amplesst , z)
Fnew (z)← empirical dist(S amples′st

, z)
Rewardst ,Countst

←
∑

z∈D′st
‖Fold (z) − Fnew (z) ‖

Valuest ,Countst
← 1

Countst

∑Countst
i=0 Rewardst ,i

S amplesst ← S amples′st

return Valuest ,Countst

end function

3.3.1 Uniform Sampling

Distributing samples uniformly between all the ran-
dom variables is behaviour predicted by Bayesian optimal
design of experiments. The Uniform sampling algorithm
attempts to distribute the samples evenly among all ran-
dom variables, changing the distribution as it discovers
new random variables. Therefore the agent re-budgets
its samples when new random variables are identified.
Should any one random variable have already exceeded
its new budget then it is never sampled again.

Algorithm 2 Uniform sampling strategy
function init uniform sampling(sampling budget)

Budget ← sampling budget
RandomVars← ∅
Count ← ∅

end function
function uniform sample(st)

if |Countst | < Budget then
Countst ← Countst + 1
return engage

end if
if st < RandomVars then

RandomVars← RandomVars ∪ st

Countst ← Countst + 1
Budget ← sampling budget/‖RandomVars‖
return engage

end if
return continue

end function



3.3.2 Foraging

This algorithm compares the value of available ran-
dom variable with the mean value of the known random
variables – the environment value. If the mean value of
all random variables is greater than the available random
variable then the agent continues to search but if the cur-
rent value is higher than the environment value then the
agent will engage with the presented random variable.

Algorithm 3 Foraging sampling strategy
function init forage sampling(sampling budget)

RandomVars← ∅
Values← ∅

end function
function forage sample(st)

if st < RandomVars then
RandomVars← RandomVars ∪ st

return engage
end if
if Valuesst ≥ ERandomVars [Values] then

return engage
end if
return continue

end function

The foraging strategy uses the uncertainty in the
learned distributions for the random variables as the value
for the different random variables. There is assumed a fix,
unit cost for taking a sample. Since this cost is the same
for all random variables it can be ignored. Unlike the work
of [7] this algorithm does not incorporate the cost of trav-
elling to the next sampling opportunity.

3.3.3 Budgeting

The budgeting algorithm makes the decision to sam-
ple if the encountered random variable is new to the ex-
ploring agent or if its rank is greater than or equal to
1 − remaining budget

remaining opportunities . The rank of the random variable
is where it is positioned in list of random variables sorted
by their current value. The rank of the random variable
can be considered the belief that this opportunity is worth
sampling. The second term, 1 − remaining budget

remaining opportunities , can
be seen as the probability – provided remaining budget ≤
remaining opportunities – that the agent should take a
sample. If the rank score is greater than the probability of
sampling, then the agent engages with the sampling op-
portunity. Otherwise it continues along the transect.

Like the foraging strategy the budgeting strategy must
sample any new random variable. This is to ensure it can
compare the different random variables when making the
decision to engage or forage.

Algorithm 4 Budgeting sampling strategy
function init forage sampling(sampling budget,

estimated opportunities)
RandomVars← ∅
Values← ∅
remaining samples← sampling budget
remaining opps← estimated opportunities

end function
function forage sample(st)

action← continue
if rank (st,RandomVars,Values) ≥
1 − remaining samples

remaining opportunities
∧st < RandomVars then

remaining samples← remaining samples − 1
RandomVars← RandomVars ∪ st

action← engage
end if
remaining opps← remaining opps − 1
return action

end function
function rank(st,RandomVars,Values)

sorted vars← ascending sort (RandomVars, key = Values)
return index o f (st, sorted vars) /len (sorted vars)

end function

Since this algorithm is mindful its sampling budget
we anticipate that it will out perform the foraging strategy.
Like the foraging algorithm this approach does not explic-
itly take into account the cost of sampling or traversing
between sampling sites.

4 Results

4.1 Experiment 1 Condition 1: Uniform
Distribution of Sampling Opportunities

Initially the budgeting algorithm out performs the uni-
form and foraging strategies. However they quickly con-
verge to similar performance for all budget sizes, within
a 95% confidence interval of each other. Figure 3 shows
that the budgeting algorithm does at least as good as the
two competing algorithms for all budget sizes.

4.2 Experiment 1 Condition 2: Non-Uniform
Distribution of Sampling Opportunities

When the distribution of random variables is non-
uniform there is a difference in performance of the dif-
ferent algorithms. The budgeting and foraging algorithms
perfrom better than the uniform strategy for small budget
sizes, as can be seen in Figure 5. For larger budget sizes
the foraging strategy plateaus because it does not expend
its entire sampling budget before the transect ends. The
budgeting strategy, which does attempt to spend all of it
sampling budget, improves its error with larger sampling
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Figure 3. There is no clear winner among
the uniform, foraging, and budget-
ing strategies for variables are equally
likely, except for the smallest budget
size.

budgets. However as Figure 4 shows uniform sampling
still performs better for larger sampling budgets.
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Figure 4. Initially the budgeting strategy
performs better or as good as the com-
peting strategies. However when the
forgaging strategy plateaus the error of
the budgeting strategy continues to im-
prove. While the scores budgeting strat-
egy for large sample budgets is lower-
bounded by the uniform strategy.
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Figure 5. For small budget sizes the bud-
geting algorithm outperforms both the
foraging and uniform strategies. As the
sampling budget gets larger the perfor-
mance of the algorithms converges to
the other algorithms.

4.3 Experiment 2: Effect of Estimation Error
on Budgeting

The second experiment determined the effect of incor-
rectly estimating the number of sampling opportunities.
As can be seen in Figure 6 there is no significant penalty
on the performance of the budgeting algorithm for under
estimating the number of sampling opportunities. When
the number of sampling opportunities is over estimated
the performance of the budgeting algorithm decays.

5 Conclusions

The objective of the paper was develop a better al-
gorithm than the foraging algorithm presented in previ-
ous work by the authors [10]. The budgeting algorithm
does achieve that objective and provides a new rule for
autonomous decision making while exploring in unknown
environments. Employing these strategies should improve
the performance of robot scientists.

The budgeting algorithm always performs at least as
well as either of the foraging or uniform strategies. Unlike
the the foraging algorithm the budgeting strategy always
uses all of its sampling budget on a transect. Like the
foraging strategy the budgeting strategy outperforms the
uniform strategy for small budget sizes.

The budgeting strategy requires an estimate of the
number of sampling opportunities on a transect. It is more
harmful to overestimate the number of available sampling
opportunities. This teaches us that it is best to err in favour
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Figure 6. The budgeting strategy is harmed
more by overestimating the number of
samples on a transect that underestimat-
ing that number. The increased error is
more pronounced for small sample sizes
than large ones.

of conservative estimates in the number of opportunities to
sample on a transect.

In the future this work will be expanded to incorporate
estimated energy costs of traverse and the risk of vehicle
failure associated with different path choices. This work
will also be deployed on future missions to the Atacama
Desert as part of the Life in the Atacama Desert project.
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