Symposium Program

Monday June 20, 2016

8:15	Registration			
9:15	Welcome and Introductions(room No.5)			
	Liu Hong			
9:30	Session1 (room No.5)			
	Programmatics			
	Tian Yulong			
	Erick Dupuis			
	Thilo Kaupisch			
	Gianfranco Visentin			
	Takashi Kubota			
12:00	Lunch			
14:00	Session 2a(room No.5)	Session2b(room No.2)	Session 2c(room No.3)	
	On-orbit servicing (1)	Cooperative robotis +	Test Bed	
		Terrain assessment		
15:40	Coffee Break			
16:00	Session3a(room No.5)	Session3b(room No.2)	Session3c(room No.3)	
	Plenary rovers	Simulation (1)	Navigation (1)	
18:15	Welcome reception			
20:00	End of Day 1			

Tuesday June 21, 2016

8:10	Arrival				
8:20	Session 4a: (room No.5)	Session 4b: (room No.2)	Session 4c: (room No.3)		
	On-orbit servicing (2)	Simulation (2)	Navigation (2)		
10:00	Coffee Break				
10:20	Session 5a(room No.5)	Session 5b(room No.2)	Session 5c(room No.3)		
	Space Mechanism Design	Advanced Control	Planning		
	(1)	Technology(1)			
12:00	Lunch				
14:00	Tour to China Academy of Space Technology				
16:30	End of Technical Tour				
16:40	Buses Depart CAST for Banquet Location				
18:00	Banquet				
21:00	Buses Depart for Friendship I	Hotel			

Wednesday June 22, 2016

8:10
8:10

8:20	Session 6a: (room No.5)	Session 6b: (room No.2)	Session 6c: (room No.3)
	Space Mechanism Design	Advanced Control	Remote Operation (1)
	(2)	Technology(2)	
10:00	Coffee Break		
10:20	Session 7a(room No.5)	Session 7b(room No.2)	Session 7c(room No.3)
	Space Components (1)	Advanced Control	Remote Operation (2)
		Technology(3)	
12:00	Lunch		
13:30	Session 8a(room No.5)	Session 8b(room No.2)	
	Space Components (2)	Vision / sensors (1)	
15:10	Coffee Break		
15:25	Session 9a(room No.5)	Session 9b(room No.2)	
	Wheel/soil interaction +	Vision / sensors (2) +	
	Scheduling	Future Application	
17:30	End of Day 3		

Note: A talk in Progammatics session lasts for 30 minutes, an ordinary talk lasts for 25 minutes.

Session On-orbit servicing (1)			
1			Toward Performing a Filter-Vacuuming Procedure
	America	Gee Seth	Using a Humanoid Robot on ISS
2	China	Cao Xuobai	Approach Method of a Formation Space Robotic
	CIIIIa	Gao Xuenai	System for On-orbit Servicing of GEO
3	<u></u>	Scherzinger	Vision-Based Localization of Modular Satellite
	Germany	Stefan	Interfaces for Robotic On-Orbit Manipulation
4			Impact Analysis of Flexible Space-based Robot
	China	Liang Jie	Capturing Non-cooperated Targets and
			Backstepping Control and Vibration Suppression

Session On-orb	Session On-orbit servicing (2)			
1	A rea e ri e e	Rualat Maria	Astrobee: A New Platform for Free-Flying Robotics	
	America	Budiat Maria	Research on the International Space Station	
2	China	Mang Volume	Development of Spacecraft On-Orbit Construction	
	Clillia	wang Youyu	and Maintenance Technologies with Space Robot	
3			A MULTIPLE WORKING MODE APPROACH TO	
	Canada	Canada Liu Guangjun	CONTROL OF SPACE MANIPULATOR INTERACTION	
			WITH UNKNOWN TARGETS	
4	China	China Wu Shuang	Study of a Space Robot Capturing a Fast Rotating	
	China		Object from a Floating Spacecraft	

Session Terrain assessment + Cooperative robotics			
1		Frank	Autonomous 3D Terrain Mapping and Object
	Germany	Neuhaus	Localization for the SpaceBot Camp 2015
2	Europo	Dako Dawal	Regolith sampling and Deep Drilling in Low Gravity
	Europe	Pako Pawei	environment
3			Modeling and virtual decomposition control with
	China	Li Gang	stability analysis for multi-arm-multi-joint space
			robots
4			Impact Dynamic Modeling for Dual-arm Space
	China	Chong ling	Robot Capturing Non-cooperative Spacecraft and
		Decentralized Adaptive Fuzzy Robust (Decentralized Adaptive Fuzzy Robust Control for
			Closed Chain

Session Test Bed			
1	Furana	Evangelos	HDPR: A Mobile Testbed
	Europe	Boukas	for Current and Future Rover Technologies
2	Europo	Gianfranco	Recent Developments on ORBIT, a 3-DoF Free
	Europe	Visentin	Floating Contact Dynamics Testbed
3	China	Zhang	Using Industrial Robots to Emulate the Contact
		Xiangyang	Dynamics Behavior of a Space Manipulator
4	Germany	Andra Kunatz	Virtual Testbed for Development, Test and
		Andre Rupetz	Validation of Modular Satellites

Session Advanced Control Technology (1)			
1		Liv Mashaa	Fuzzy Disturbance Observer-based Control for
	China	LIU YECHAO	Flexible-Joint Robot Manipulators
2		Stonomon	A Nonlinear Optimization Method to Provide Real-
	Germany	Samantha	Time Feasible Reference Trajectories to Approach
			a Tumbling Target Satellite
3	China	Zhang Lijiao	Based on Adaptive Observer Sliding Mode Control
	China	Zhang Lijiao	of Free-floating Flexible-joints Space Robot
4	Japan	Honda	Estimation of a dynamic behavior for a capture
		Akihiko	mission using flexible mechanism

Session Advan	Session Advanced Control Technology (2)			
1	1	Henshaw	Memory-Based Robotic Motion Primitive Learning	
	America	Carl Glen	for Kicking and Striking Tasks	
2			Robust H_infinity Control and Double Flexible	
	China	Liang Jie	Vibration Active Suppression of Space Robot with	
			Flexible-Link and Flexible-Joint	
3	lanan	Uwano	Adaptive Learning Based on Genetic Algorithm	
	Japan	Fumito	for The Rover in Planetary Exploration	
4			Fast sliding mode control of free-floating flexible	
	China	Tong Chao	space robot by fuzzy-based exponential reaching	
			law	

Session Advanced Control Technology (3)			
1			Dynamic for Dual-arm Floating Space Robot with
	China	Cheng Jing	Closed-chain and Recurrent Robust Fuzzy Neural
			Network for Object Grasping
2		Coo Soth	Seat Track Localization and Tracking for Robonaut
	America	Gee Seth	2 Mobility on the International Space Station
3	China	Zhao Ziwang	Fault-tolerant control and active vibration
			suppression of free-floating flexible space robot
4	China		Research on management methodology of large
	China	Jing Zheng	spacecraft testing

Session Remote Operation (1)			
1	China	Duan Viviang	Laser Induced Breakdown Spectroscopy (LIBS) in
	Cillia	Duan fixiang	Space Exploration
2	Europo	Azkarate	Remote Rover Operations: Testing the ExoMars
	Europe	Martin	Egress Case
3	<u>China</u>	Huang	A Novel Dual-User Shared Teleoperation Training
	Clillia	Panfeng	Method with Multiple Dominance Factors
4		Kimura	Document Base Programming System To Realize
	Japan	Chinichi	Seamless Linking Between On-board Software and
		Shinichi	Ground Operating System

Session Remote Operation (2)			
1	China	Zhang	OPERATION AND CONTROL OF SPACE REMOTE
	Clillia	Xiaodong	MANIPULATOR
2	Cormony	Ribin	KONTUR-2 Mission: The DLR Force Feedback
	Germany	Balahandran	Joystick for Space Telemanipulation from the ISS
3	China	Zong Liiun	Occasion Determination for Space Robots
		Zong Lijun	Capturing Tumbling Targets
4	America	Care Cath	A Predictive Interactive Graphical Interface for
		Gee Seth	Supervising a Humanoid Robot across Time Delay

Session <i>Planetary rovers</i>				
1	Canada	Erick Dupuic	Results from CSA's 2015 Mars Analogue Mission in	
	Callaua		the Desert of Utah	
2	lanan	Yuguchi Yudai	Microgravity Experiment of Rock Climbing	
Jab	Japan		Locomotion for Exploration Robot on Minor Body	
3	Cormoniu	Cordes	Charge TT: A Marsetile Linkrid M/heeled Lee Dever	
	Germany	Florian	Sherpart: A versatile Hybrid wheeled-Leg Rover	
4	China	Qian Cheng	Design and Analysis of Tri-Folded and Deployed	
			type Transfer Ramp for Mars Rover	

Session Space	Session Space Mechanism Design (1)			
1	China		Form-finding of Cable Net Structure for Large	
	China	LI BINg	Mesh Reflector	
2		Kenji Nagaoka	Mobility Performances of Ciliary Locomotion for an	
	Japan		Asteroid Exploration Robot under Various	
			Environmental Conditions	
3	India	Sandhya	A Versatile Advanced Precision Robotic Space	
		Rao	Manipulator for INS-SPACE Applications	
4	lanan	Rui Qu	Study on Space Robot's End-Effector Exchange	
	зарап		Mechanism	

Session Space Mechanism Design (2)			
1	Canada	Lin lun	Design of an Innovative Micro-rover with Multiple
	Callaua	LIII JUII	Modes for Mars Exploration
2	lanan	Oikawa	Thermal Design and Analysis of Conceptual Flight
	Japan	Takuto	Model of Lunar Exploration Rover
3			The Research of Adsorption Mechanism in Space
	China	Su Yilin	Crawling Robot On-orbit Servicing for Cooperative
			Spacecraft
4	Japan	Sakamoto	Design Study of Jumping Rover for Planetary
		Kosuke	Exploration

Session Simulation (1)			
1	Cormony	Roy	Software-in-the-loop simulation of a planetary
	Germany	Lichtenheldt	rover
2		Zhang Lijiao	Based on L-two-gain Robust Controller for
	Clilla		Free-floating Multiple Flexible-links Space Robot
3	<u></u>	Roy	Leaping in low gravity – Modeling MASCOT's
	Germany	Lichtenheldt	hopping locomotion on asteroid Ryugu
4	Europe	Jakub	A repetie testhed for low growity simulation
		Tomasek	A robotic testbed for low-gravity simulation

Session Simulation (2)				
1	Germany	Rainer Krenn	Docking Simulations for ASSIST System Verification	
2	China	Wang	A Real-time Simulation Architecture for Multi-arm	
	Clillia	Mingming	Space Robots Based on Rapid Prototyping	
3			The eRobotics-Approach: Combining Complex	
	Cormoniu	Emde Markus	Simulations with Realistic Virtual Testing	
	Germany		Environments for the Development of	
			Space-qualified LiDAR Sensors	
4			L2 Back-stepping Control of Free-floating Space	
	China	Dai Qiaolian	Robot with Flexible Joint Based on Nonlinear	
			Disturbance Observer	

Session Navigation (1)				
1	Cormony	Schilling Klaus	Safe Near Range Navigation Based on 3D	
	Germany		Time-of-Flight Cameras	
2	Japan	Shinji	LRF Based Autonomous Navigation System	
		Hokamoto	Measuring on Moving Rover	
3	America	Littlefield	Integrating Simulated Tensegrity Models with	
		Zakary	Efficient Motion Planning for Planetary Navigation	
4	Europe	Yol Aurelien	Vision-Based Navigation in Low Earth Orbit	

Session Navigation (2)			
1	Canada	Langley	Maturing Canadian Autonomous Guidance,
	Callaua	Christopher S	Navigation, and Control of Planetary Rovers
2	lawar	Takeishi	Dynamic Visual Simultaneous Localization and
	зарап	Naoya	Mapping for Asteroid Exploration
3	America	Greydon Foil	Physical Process Models for Improved Rover
			Mapping
4			Robust self-position estimation algorithm against
	Japan	Ishii Haruyuki	displacement of crater detection in the SLIM
			spacecraft

Session Space Components (1)			
1	China		Study on Fault-Tolerant Architecture of Motion
	China	Hou Liang	Control Computer for Space Robot
2	Canada	Christopher S.	Actuator Development for the ExoMars Rover
	Canada	Langley	Bogie Electro-Mechanical Assembly
3	Germany	Griebel	A Light-Weight and Modular High-Performance
		Чаррос	Payload Computer for Real-Time On-Board Signal
		Hannes	Processing and Autonomous Decision Making
4	Japan	Mikawa	Attitude Estimation for Small Asteroid Exploration
		Masahiko	RoversEquipped with Plural Antennae

Session Space Components (2)			
1		Peter	State of the art and recent advances for dry
	Germany	Hastrich	lubricated Harmonic Drive [®] Gears
2			3D printing of continuous fiber reinforced
	China	Tian Xiaoyong	composites with a robotic system for potential
			space applications
3	Germany	Meschede	Development of ACS, Payloads and Subsystems for
		Thomas	modular Satellites Using a Hybrid Test Bed
4	Japan	Takahiro	Experimental Evaluation of Voltage Control
			Methods in Electrical Power System for Planetary
		AKULSU	Rover

Session Wheel/soil interaction + Scheduling			
1			Design, Modeling, and Results of the
	America	Glick Paul	One-Directional Self-Locking Clutch Design Applied
			to NASA's SUPERball Planetary Explorer
2		Kyohoi	Extended Gripping Conditions of Rock Climber-Like
	Japan	Kyonei Maruya	Robot for Asymmetric Gripping Configuration in
			Microgravity
3	lanan	Higa Shoya	Three-dimensional stress distribution of
	Japan		a rigid wheel on lunar regolith simulant
4		Kenji Nagaoka	Mobility Characteristics and Control of a
	Japan		Skid-Steering Micro-Rover for Planetary
			Exploration on Loose Soil
5	China	Zhu Xiaoyu	Job Scheduling for On-orbit Spacecraft Refueling
			through Plant Growth Simulation Algorithm

Session Vision / sensors (1)				
1	China		A Novel Design on the 12 DOF Force and	
	China	NI Feligiei	Acceleration Sensing	
2	Japan Nagata	Nagata	Experimental Evaluation of Gyro-based Odometry	
		Takuma	Focusing on Steering Characteristics of Wheeled	
			Mobile Robot in Rough Terrain	
3	Europo	Torres Alex	Omnidirectional stereoscopic vision systems for	
	Europe		planetary exploration rovers	
4	lanan	Mikawa	Attitude Estimation for Small Asteroid Exploration	
	зарап	Masahiko	RoversEquipped with Plural Antennae	

Session Vision / sensors (2) + Future Application				
1	China	Huang Panfeng	Object tracking using improved spatio-temporal context with Kalman filter	
2	Japan	Kosuke Akimoto	Tree-based nonparametric prediction of normal sensor measurement range using temporal information	
3	Japan	Satoshi Suzuki	The First Experiment of a High-accuracy 2D Color Marker in Space	
4	Japan	Rei Saito	Possibility of Education Project based on Cansat	

Session <i>Planning</i>				
1	Amorica	Christopher	Multiobjective Waypoint Sequencing for Planetary	
	America	Cunningham	Rovers with Time-Dependent Energy Constraints	
2	Japan	Tanaka Koki	Modeling of LiDAR Measurement Uncertainty	
			for Rover Path Planning	
3	Amorica	Inotsume	Slope-Ascent Path Planning for Exploration Rovers	
	America	Hiroaki		
4	Japan	Sakayori Go	Power-synchronized Path Planning for Mobile	
			Robot in Rough Terrain	