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ABSTRACT

This paper investigates an On-Orbit Servicing (OO-
Servicing) estimation problem in using a robot-equipped
spacecraft (On-Orbit Servicer (OOS)) for capturing a
non-cooperative satellite (Target) which lacks navigation
aids and whose parameters of motion, geometry and in-
ertia may be known only with limited certainty during
the initial rendezvous. The uncertainty in the robot’s
own pose (egomotion uncertainty) during the subsequent
manipulator approach also limits the accuracy of such
a Position-based Visual Servo (PBVS) capture. Vision
measurements are an appealing choice but the slow sam-
pling restricts the servoing rate and the processing delay
poses a nontrivial multi-sensor estimation problem. Fur-
thermore, they are also characterized by variable noise
and a high outlier density. In this paper, an estimation
scheme that facilitates such a vision-based capture with
an end-effector mounted camera (eye-in-hand) is investi-
gated. A novel Extended Kalman Filter (EKF) is imple-
mented which robustly estimates the states and param-
eters by using the available measurements: the relative
pose between the Target and camera, and the robot’s kine-
matics. The proposed estimator is shown to be robust to-
wards the aforementioned problems that are associated
with vision sensors. In both phases of approach, the
proposed estimator’s robustness is demonstrated through
simulations and Software In Loop (SIL).

Key words: Extended Kalman Filter (EKF); Position-
based Visual Servo (PBVS); On-Orbit Servicing (OO-
Servicing); .

1. INTRODUCTION

Deutsche Orbitale Servicing Mission (DEOS) from
Deutsches Zentrum für Luft- und Raumfahrt (DLR) was
pivotal in steering the narrative in On-Orbit Servic-
ing (OO-Servicing) towards capture of non-cooperative
spacecraft as mission objectives. The relative navigation
in this instance was planned with a vision-based system.
This specific problem of a vision-based robotic capture

of a tumbling satellite is addressed in this paper. In such
a scenario of OO-Servicing, an On-Orbit Servicer (OOS)
must first ensure precise vision-based navigation which
is one of the appealing choices for aiding Target-capture
[1]. A preliminary requirement, however, is to determine
the inertial and geometric properties of the Target using
vision measurements. The estimation of these parame-
ters are pivotal in the subsequent servoing process. For
such a camera-aided system, an estimation scheme which
uses the slow, noisy and delayed sensor data to predict
the relative motion is a necessity. The primary focus of
this paper is to develop features that address these unique
problems and to analyze the estimator behavior through
the two preliminary phases of approach: Rendezvous and
Manipulator. In the former phase, the objective is to de-
crease the Target’s parameter uncertainty while the latter
phase is directed towards aiding the Position-based Vi-
sual Servo (PBVS). These two approach phases are ex-
plained in figure 1. Since, the observed motion in the
camera depends on both the Target and the OOS, OOS
disturbances will directly affect the PBVS performance.
In this paper, a novel approach is proposed which uses
the camera and the robot’s kinematics to reduce the ef-
fect of such egomotion uncertainty during PBVS in the
latter phase.
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Since the relative kinematics/dynamics between the Tar-
get and the OOS is nonlinear, Extended Kalman Filter
(EKF) is often a suitable candidate [1]. In the context
of OO-Servicing, this has been established and demon-
strated in various instances [2] [3]. The treatment of this
problem in [4] and [5] provide a relevant discussion in the
context of estimator observability and degenerate condi-
tions. It is worth pointing out that inertia identification
using EKF requires reparametrization to avoid explicit
EKF constraints. In this paper, the inertia expressions
provided in [3] have been evaluated. In any case, for
torque-free motion, the inertia matrix can only be deter-
mined upto a scaling factor [5].

In an estimation scheme based on vision-measurements,
it is common to utilize a pre-filtering algorithm [4] which
provides coarse pose measurements using a computer vi-
sion technique. Firstly, the sampling rate of such an al-
gorithm is non-uniform and much lower than the con-
troller. Furthermore, the measurement samples are de-
layed due to processing. Although an event-driven EKF
will overcome the sampling problem, the processing de-
lay poses a non-trivial estimation problem when multiple
sensors are used. The mathematical foundation of such
measurement updates have been found in [6] and [7].
Zhang et al. termed this situation as an Out-of-Sequence-
Measurement (OOSM). Failure to account for the delay
will obviously lead to large errors. Secondly, the mea-
surement error characteristics are sensitive to bad light-
ing conditions and occlusion [3]. Additionally, the noise
characteristics of vision algorithms are not strictly Gaus-
sian [8]. So, it is a natural estimator requirement to ex-
hibit adaptive response to vision-based measurements. A
finite memory covariance-matching technique was pro-
posed in [3]. Among Bayesian approaches [9], methods
based on Variational Bayesian (VB) have recently gained
traction [10] [11]. This paper explores the VB-adaptive
technique [10] and is shown to converge in only a few up-
date iterations. Furthermore, the pre-filtering algorithm
frequently reports outlier measurements which adversely
affect the estimator’s operating health after fusion. For
outlier robustness in an estimator, the Mahalanobis dis-
tance as a discriminating function was proposed in [12].
In this paper, a threshold based on χ2-test is used for Out-
lier Rejection (OR).

In the context of OO-Servicing, the relative translational
motion between two bodies in orbit are given by the
Clohessy-Wiltshire [13] linearized equations and have
been consistently used in rendezvous and docking appli-
cations. It is natural that these along with the torque-free
Euler equations are used to model relative motion dynam-
ics between OOS and Target. The relative orientations in
the EKF are modeled using multiplicative quaternion er-
rors to avoid the quaternion covariance matrix’ rank de-
ficiency problem [14] [15] [16]. In this paper, the small
rotation approximation from [16] is used.

Visual servoing has been successfully employed in ter-
restrial applications since 1980s, as has been surveyed by
Hutchinson et al. in [17]. In contrast to terrestrial visual
servoing techniques, for space applications, free-flying or

free-floating kinematics/dynamics of the OOS have to be
modeled. In this volume of work, the robot’s configura-
tion is defined in SE(3) as the pose of the OOS mass
center relative to the camera.
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Figure 2: Body diagrams of OOS and tumbling spacecraft

Figure 3: Simulated scenario of the grasping problem at DLR’s
OOS-simulator

2. DEFINING THE MODEL
As a convention, quaternions, vectors and Matrices
are indicated by boldface symbols with an additional
over-line (̄.), lowercase alphabet and uppercase alphabet
respectively. Figure 2 is a diagrammatic representation
of an OO-Servicing scenario in which an OOS is ap-
proaching the Target in a similar orbit. Frame {A} is
centered at the OOS’s mass center and oriented along
the orbital frame. {O} is the OOS’s base frame that is
determined by the OOS’s manipulator kinematics from
the end-effector to the base. The camera is assumed to
be mounted on the end-effector and the camera frame
{Aee} has its z-axis perpendicular to the image plane,
x-axis to the right of image center and the y-axis com-
pleting the triad. {A} is located at a position of ρc from
{Aee} and its orientation is denoted by a quaternion 3̄.
Following the conventional models [3] [4], the Target
body frame {B} is the oriented parallel to the principal
axes of inertia and is centered at the mass center of the
Target. The feature/grasping plane (marked by grey)
that is visible to the camera lies in {C} at the feature
center. The relative pose of the grasping frame {C} with
respect to body frame {B} is given by position ρt and
an orientation quaternion η̄ . The Target is assumed to
be have to torque-free motion in space characterized by
an angular velocity ω expressed with respect to {A}
in the Target body frame. Moreover, {A} is the orbital
reference frame and can be assumed for a short duration



to be inertial during visual servoing. The Target has
a relative position r and an orientation quaternion q̄
with respect to {A}. One of the primary advantages
of this representation is the decoupling of translational
and rotational dynamics [2], [3] of the Target. This also
simplifies the quaternion calculations since the error
dynamics for q̄ and η̄ are expressed in the Target’s body
frame. This aspect will become clear once the attitude
error dynamics are derived in section 3.1.

The robot pose uncertainty is a contributing factor
only during the Manipulator-approach. In this phase,
however, the translational dynamics due to orbital motion
do not have a contribution.

3. DERIVING THE MODEL

3.1. Attitude in Multiplicative EKF (MEKF)

In this paper, the attitude of one frame with respect
to another is expressed using R4 magnitude-constrained
quaternions like. The time-derivative of the quaternion q̄
with respect to the relative-frame is related to the angular
velocity ω (in body frame) as given by,

˙̄q(t) =
1

2
ω̄ ⊗ q̄(t) (1a)

where ω̄ is simply
[
ω(t)

0

]
.

Applying the differential equation above to the current
problem, ω is the angular velocity of the Target with re-
spect to {A} in the Target’s body frame.

The reader is referred to detailed properties and deriva-
tions of quaternions in [18] and [19].

Since a quaternion is constrained in magnitude and has
3 Degrees of Freedom (DOF), the vector components are
not statistically independent which results in singular co-
variance matrix for a full-state quaternion [16]. Instead
of the full-state quaternion, it is common to estimate an
unconstrained 3-dimensional attitude vector in a EKF, a.
From this vector, an orientation error quaternion δq̄ is
estimated which can be used to express the estimated at-
titude, ˆ̄q . For small error rotation about the angular axis,
δθ, the differential quaternion can be written as,

δq̄ ≈
[
1
2δθ
1

]
⇒ δq̄ = δq̄(δθ) (1ba)

In this small-angle formulation, a = δθ. Some authors
[3] use an alternative notation, a = 1

2δθ.

MEKF is the formulation in which the orientation quater-
nion estimate, ˆ̄q is derived as a product of the quater-
nions representing error δq̄ and the reference erroneous

attitude q̄ref [14]. There are two ways to formulate the
error quaternion, δq̄ .

δq̄b(ab) = q̄ ⊗ q̄∗ref (1c)

δq̄ i(ai) = q̄∗ref ⊗ q̄ (1d)

where (1c) expresses the attitude error in the body frame
while (1d) expresses the error in the relative reference
frame. Details of such expressions for ab and their corre-
sponding dynamics can be derived using the mathemati-
cal basis provided in [14], [15] and [16]. The error vector
ȧb dynamics have also been defined in [3, see App. A],
where the expression differs from that of the previous au-
thors only by a factor of 2. The attitude error dynamics
can be written according to [3] as,

ȧb = fa(ab, δω) ≈ −ω̂ × ab +
1

2
δω (1e)

where ω̂ is piece-wise constant. In [20], the authors
have made a comparative study on the choice of reference
frames and derived the dynamics for both formulations
(1c) and (1d). Pertinent to the discussion here, for the
error expression in the relative frame, eq. (1d), ȧi = 0.

In estimation, the attitude error in body frame is favorable
to estimate angular velocity due to the presence of δω
in its dynamics. In the relative frame, however, attitude
estimation is the only mathematical possibility.

Let us assume a nominal reference q̄r, error quaternions,
δq̄(.) and the true attitude being q̄ . Performing quater-
nion multiplication according to (1d) and (1c), we obtain
the vector(q(.)) and scalar components(q(.)). Ignoring the
identical scalar components and rearranging the vector
parts and equating both the resultant equations, we get,
δqb − dqeqr = δqi − dqreq. Solving this equation, we
get,

δqi =δqb + 2dqreq
=δqb + 2dqre

[
δq̄ ⊗ q̄r

]
v

=δqb + 2dqre(−dδqbeqr + δqbqr + qrδqb)

=δqb + (−2dqredδqbeqb) + (2δqdqreqr) + (2qrdqreδq)

=(I + 2dqre2 + 2qrdqre)δq

=(I + 2qrq
T
r − 2||qr||2I + 2qrqr)δqb

=((2qr − 1)I + 2qrq
T
r + 2qrdqre)δqb

⇒ δqi = R(q̄r)δqb (1f)

which defines the relationship between quaternion errors
in involved frames. The Target’s orientation, q̄ is ex-
pressed in the body frame {B} in terms of its error dy-
namics as shown in (1e)



3.2. Attitude Dynamics

Following the authors in [3], the rotational dynamics are
expressed in terms of inertial ratios p by modifying the
Newton-Euler equations for torque-free motion. [3, see
App. B]

ω̇ = ψ(p,ω) + J(p)ετ (3a)

where p =


Iyy−Izz
Ixx

Izz−Ixx
Iyy

Ixx−Iyy
Izz

 is the inertia reparametrization

and rest of the symbols in (3a) are in keeping with the
equations provided in [3].

Linearizing about a nominal state-space point, ω and p
gives,

d

dt
δω = M(ω,p)δω + N(ω)δp+ J(p)ετ (3b)

The inertial parameters are given as unchanging states,

ṗ = 0 (3c)

3.3. Translational motion

The linear time-evolution of relative position between
two bodies around a central body is given by the Hill-
Clohessy-Wiltshire (HCW) equations [13]. Under the
relevant assumptions, the HCW equations give closed-
form solutions for relative position of a follower (Target)
with respect to leader (OOS). In figure 2, {A} is the de-
fined Hill frame and the solution for r̈ components are
are given as,

r̈ = HCW (r, ṙ, n) (3d)

where, HCW is the linear function [13], n is the mean
motion of the OOS in orbit. It is important to point out
that {A} is not perturbed by a change in robot configura-
tion for freefloating dynamics.

3.4. Target geometry

As mentioned in section 1, a pre-filtering algorithm is
used to convert image measurements to pose measure-
ments. In a typical scenario, the Target’s geometrical
and inertia parameters are uncertain or unknown. The
dynamics of the grasping point pose are unchanging in
time and hence the time-derivatives of pose states, ~xθ =[
ρTt δηT

]T
is given by,

~̇xθ = 0 (4a)

where δη = δη̄v , δη̄ = η̄∗
ref ⊗ η̄k. It is important to

point out that the error-quaternion δη is expressed in the
relative frame, that is, in the Target’s body frame {B}.

3.5. Robot pose

The pose of the robot is determined by ρc and the quater-
nion 3̄, and is a function of the joint anglesφ. The differ-
ential kinematics of the mass center {A}, as referenced
from the camera frame {Aee} is given by an analytic Ja-
cobian transformation.[

ρ̇c
ωb

]
= u = Js(θ)θ̇ +wrob (5a)

where E[wrw
T
r ] = Qrob is the robot’s differential kine-

matics disturbance covariance and accounts for egomo-
tion uncertainty, and θ is the joint space position vector.

As explained in 3.1, the quaternion error dynamics is
rewritten in the the body frame {O} as

δ3̇ = −ω̂b× 3 (5b)

Based on the phase of approach, the state-space defini-
tions for system Σ can be set as follows.

Σ1 : ~X =
[
q̄T ωT pT rT ṙT ρTt η̄T

]T (5c)

Σ2 : ~X =
[
q̄T ωT rT ṙT ρc

T 3̄T
]T

(5d)

whose dynamics are given by equations in (1e), (3a),
(3c), (3d), (4a), (5a). The reader must also keep in
mind that eq. (5c) is applicable to the Rendezvous while
eq. (5d) is used for Manipulator (PBVS), among the two
approach phases. In all the state-definitions above, the
quaternion attitude is maintained in the 3-dimensional er-
ror form.

4. MEASUREMENT MODEL

The first measurement comprises of pose-estimates[
rTc µ̄T

]T
of the grasping frame {C}, from a camera

({Aee}) which is mounted on the end-effector as shown
in figure 3. The OOS at DLR uses a redundant monoc-
ular odometry system based on Computer-Aided Design
(CAD) model. The robot pose measurements are given
by forward kinematics as

[
ρc
T 3̄T

]T
. So, the output

function is described as,

y :


rcdµ̄dρck
3̄k

 =

ρcd +R(3̄d)(rd +R(q̄d)ρtd)
η̄d ⊗ q̄d ⊗ 3̄d

ρck
3̄k


(6)

where ρt is expressed in the Target body frame {B} and
k and d refer to time indices. It is clear that the camera
measurements are expressions of a past state at time d.

During Rendezvous approach, we rewrite the relevant ob-
servation equations for camera in terms of noisy measure-



ments as,

yk(r̆ck , ˘̄µk, ρ̆ck,
˘̄3k) =

[
R( ˘̄3d)

T (r̆ck − ρ̆cd)
(η̄∗
rk
⊗ ˘̄µd ⊗ ˘̄3∗

k ⊗ q̄∗rk)v

]
(7)

⇒ hk( ~X )
.
=

[
rd +R(q̄d)ρtd
(δq̄d ⊗ δη̄d)v

]
(8)

It is important to point out that, as described in 3.1, the
quaternion error expressions δq̄ and δη̄ , both, are ex-
pressed in the Target’s body frame, {B} and hence ⊗ op-
eration is natural.

In the Manipulator approach, the joint angles can be used
to determine the robot SE(3) configuration and can be
used as follows,

yk(r̆ck , ˘̄µk, ρ̆ck,
˘̄3k) =


ρcd +R(3̄d)(rd +R(q̄d)ρtd)

(q̄∗rd ⊗ η̄
∗ ⊗ ˘̄µd ⊗ 3̄∗

rd)v
ρck

(3̄k ⊗ 3̄∗
rk )v


(9)

In the above equation, let us take the camera pose quater-
nion error at time k, δµ̄

δµ̄ = (q̄∗rk ⊗ η̄
∗ ⊗ ˘̄µk ⊗ 3̄∗

rk
)v (10)

Using the quaternion expression for µ̄ in (6) and substi-
tuting in (10), we get for a given time-step,

δµ̄ = (q̄∗rk ⊗ η̄
∗ ⊗ η̄k ⊗ q̄k ⊗ 3̄k ⊗ 3̄∗

rk
)v (11)

= (δq̄ ik ⊗ δ3̄k)v (12)

From the state-space definition in eq. (5d), δq̄v is ex-
pressed in {B} while δ3̄v is expressed in {A}. In this
case, ⊗ operation is not meaningful. In the equation
above, δq̄ ik is the error quaternion in the relative frame,
or the OOS’s mass center frame, {A}. Based on the
derivation in (1f), δq̄v is transformed to the {A}. For
the sake of ω estimation, δq̄ is propagated in {B}, as dis-
cussed in section 3.1. We use this formulation to define
hk as follows.

hk( ~X ) =


ρcd +R(3̄d)(rd +R(q̄d)ρtd)

(δq̄ id ⊗ δ3̄d)v
ρck

δ(3̄k)v

 (13)

where, δqik = R(q̄rk)δqk and δqk has been propagated
by the EKF. To find the corresponding error quaternion
δq̄ from the 3-dimensional form, δq, the unity constraint
is used to determine the scalar component. After conver-
gence of the EKF, δq ≈ 1. In the equations above, all (.)k
represent a quantity that is computed based on a current
state, (̆.) are noisy data, the (̄.)r represent the computed
reference quaternions and (̄.)v is the vector component of
the quaternion.

5. KALMAN FILTER

A detailed derivation of the EKF is provided in [21] and
the final equations relevant for this paper are,

Predict:

x̂(k + 1|k) = fk(x̂(k|k))

Σ(k + 1|k) = FkΣ(k|k)F Tk +Qk

(14)

Update:

x̂(k|k) = x̂(k|k − 1) +Kk(yk −Hkx̂(k|k − 1))

Σ(k|k) = (In,n −KkHk)Σ(k|k − 1)

Kk = Σ(k|k)HT
k

(
HkΣ(k|k − 1)HT

k +Rk

)−
(15)

where, Fk andHk are the jacobians computed at current
estimate and x0 ≡ N [x̂(0|0),Σ(0|0)].

6. VARIATIONAL BAYESIAN ADAPTIVE FIL-
TERING

The non-uniformity of measurement noise characteristics
Rk observed on OOS at DLR prompted the motivation to
develop an EKF which exhibits adaptive response. In [9],
Mehra for the first time presented a classification of such
adaptive methods. In contrast to [3], a Bayesian approach
[9] is employed in this paper and evaluated for chang-
ing noise covariances. VB inferencing is an approximate
method that is used to express the posterior distribution
in a tractable manner for a Bayesian approach. For the
purpose of Kalman filtering [22], it is known that the pos-
terior of the state has to be Gaussian for the assumptions
to hold true. As early as 1970, in [9], the approach to esti-
mateRk using an Inverse-Gamma (Γ−) distribution was
already discussed. In [10], a Γ− distribution is assumed
on the diagonal elements of the measurement noise co-
variance matrix and the equations are derived for a linear
system. This methodology is employed here for adapting
the measurement noise covariance for the linearized sys-
tem. The derivation of the relevant equations are intuitive
and the main advantage of this method is swift conver-
gence through a few iterative update steps which start at
Algorithm 1, line 5. There are three parameters in the
VB-EKF: β and α determine the diagonal elements of R̂
while ρ is the propagation factor for the (Γ−) distribu-
tion. This means, if ρ = 0.99, adaptive response will be
sluggish while ρ = 0.1 will make the filter sensitive.

7. OUT-OF-SEQUENCE-MEASUREMENT

The requirement is to perform multiple-sensor estima-
tion using measurements defined in section 4. This esti-
mation problem of processing delay in camera measure-
ments is non-trivial and has been discussed in [7] and
[6]. In the following paper, the Global Optimal update
for Algorithm-I provided in [7] has been used because of



Algorithm 1 VB-EKF for each update

1:
[
x̂(k + 1|k), Σ(k + 1|k)

]
←

EKF-predict(Σ(k|k),Qk, x̂(k|k)) . Predict:
2: α̂k+1,i ← ρiαk,i ∀ i ∈

[
1 d

]
3: β̂k+1,i ← ρiβk,i ∀ i ∈

[
1 d

]
4: if yk 6= NULL then . Update:
5: for n← 1 to N do
6: R̂n

k+1 ← diag[
βnk,1
αn
k,1
...
βnk,d
αn
k,d

]

7:
[
x̂n(k + 1|k + 1), Σn(k + 1|k + 1)

]
←

EKF-update(R̂n
k+1,Σ(k + 1|k), x̂(k +

1|k))
8: βnk+1,i ← β̂k+1,i+

1
2
(yk−h(x̂n(k+1|k+1))2i+

1
2
(Hk+1Σ(k + 1|k + 1)HT

k+1)ii ∀ i ∈[
1 d

]
9: end for

10: Set β̂k+1,i ← βNk+1,i, x̂(k + 1|k + 1)← x̂N (k +
1|k + 1), Σ(k + 1|k + 1)← Σn(k + 1|k + 1)

11: end if

its compact data storage. The pseudo-code for this al-
gorithm is given in Algorithm 2. The cam trig and
meas trig triggers are related to the time of image cap-
ture and time at which measurement is reported. The
concat function concatenates the camera pose samples
to the measurements and the OOSM-data to the current
state details. The derivations of the relevant equations in
[7] for this particular case is straightforward. In the algo-
rithm 2, three additional variables apart from the conven-
tional {x̂(k|k),Σ(k|k)} are added which are propagated
through time {Uk,d, x̂(d|k),Σ(d|k)}, where x̂(d|k) and
Σ(d|k) are the smoothed state belief whileUk,d captures
the correlation matrix between states at different time in-
dices.

Algorithm 2 OOSM-EKF for each update

1:
[
x̂(k + 1|k), Σ(k + 1|k)

]
←

EKF-predict(Σ(k|k),Qk, x̂(k|k)) . Predict:
2: if received(cam trig) then . OOSM init:
3:

[
U(d|k), x̂(d|k),Σ(d|k)

]
oosm init(x̂(k|k),Σ(k|k)))

4: oosm flag← true
5: end if
6: if yk 6= NULL then . Update:
7: if received(meas trig) then
8: concat(yk,Hk+1, x̂(k + 1|k), Σ(k + 1|k))

using OOSM {Uk,d, x̂(d|k),Σ(d|k)}
9: oosm flag← false

10: end if
11:

[
x̂(k + 1|k + 1), Σ(k + 1|k + 1)

]
←

EKF-update(Σ(k + 1|k), x̂(k + 1|k))
12: if oosm flag is true then
13:

[
x̂(d|k + 1), Σ(d|k + 1), Uk+1,d

]
←

oosm run(x̂(d|k),Σ(d|k),Uk,d) . OOSM
running

14: end if
15: end if

8. OUTLIER REJECTION

The EKF measurement residual ε = yk−h(x̂(k+ 1|k))
has a property that its squared Mahalanobis distance
(d2(ε)) has a χ2-distribution. This property was ex-
ploited in [12] for manipulating Rk to achieve robust-
ness. In order to avoid tampering with Rk which is set
by the adaptive VB-EKF, a threshold-based OR scheme
is implemented based on the χ2-test. Henceforth, this
implementation would be known as VB-OR-EKF.

9. SIMULATIONS AND SOFTWARE IN LOOP

For the purpose of evaluation, the Target, camera and or-
bital parameters were chosen from [3] for the simulations
and Software In Loop (SIL). The estimator’s performance
and robustness analysis have been covered in two parts:
simulations and SIL. Firstly, the estimator which is ad-
dressed as VB-OR-EKF, was implemented to facilitate
VB-adaptive response and OR. Robustness has been eval-
uated using MATLAB-based simulations for surmounting
vision-sensor issues that were previously discussed in 1.
The simulations were used to estimate states of Σ1 dur-
ing the Rendezvous phase. In order to analyze the impact
delays on multiple-sensor estimation, OOSM-EKF was
implemented by using a current and a delayed instance
of the same simulated vision sensor measurement. In
all of these simulations, the estimator performance was
evaluated using metrics which is discussed in the next
paragraph. Secondly, for evaluating the estimator dur-
ing Manipulator approach with PBVS, a SIL was imple-
mented. This consisted of the Σ2 EKF-implementation in
Simulink which was interfaced with V-REP as shown
in figure 4. The implemented controller was the PBVS
analog of the visual controller given in [23]. This part of
the analysis focuses only on the evaluation of the EKF for
the model Σ2 that uses observation model derived in the
section 4. This implies that d = k in the time indices that
were defined in section 4.

Figure 4: Virtual Robot Experimentation Platform (V-REP)
scene for SIL

The Mahalanobis distance, d(ε), is an indicator of
the filter’ current operating health and a high value is
symptomatic of input uncertainty or variable measure-
ment noise. For a normal distribution X ≡ N [µ,Σ],
d2 = (X − µ)TΣ−(X − µ). The Cramer-Rao Bound,
CRB, differs from the estimator’s own state error
covariance, Σ(k|k), in that, the linearization takes



place at the true state-space. The Square Error Matrix,
Π(k|k) = E[x̃(k|k)x̃(k|k)T ] [24], is the true state error
covariance. Ideally, Π(k|k) and Σ(k|k) should track the
linearly varying CRB closely.

In figure 5, d has been computed for the case in
which the measurement noise increases in t ∈ [100, 199]
and decreases in t ∈ [200, 300]. It is evident that the in-
crease in d due to these changes in a conventional EKF-1
will cause large estimation errors. On the other hand,
VB-EKF remains robust in this regard. The first three
(rc) adapted diagonal entries in R̂k are shown in figure 6.
The VB-specific parameters were set as: α̂0 = β̂0 = 1,
N = 4 and ρi = 0.9. The OR scheme mentioned in
section 8 was implemented with a threshold, d2th = 50.
In figure, 7, d is peaky despite the VB-adaptive response
for NO-OR, whereas, it remains unaffected for Mh-OR
(VB-OR-EKF) which was implemented with the the
proposed scheme. Figure 8 shows the logarithm of
matrix traces discussed in the previous paragraph (9).
Indices refer as follows: 1 → VB-EKF, 2 → EKF and
3 → VB-OR-EKF. From the previous figure, it is clear
that outlier density increases for t > 250 sec. Hence,
EKF errors given by Π2 increases and is not bounded
by CRB. Although VB-EKF responds to the outliers
by increasing R̂k, a drift in Π1 implies that this is not
sufficient. From this figure, it can be inferred that the
proposed VB-OR-EKF is robust towards both, variable
noise and outliers from the vision sensor.
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Figure 5: d(ε) in presence of variable measurement noise
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Figure 6: Diagonal entries in Rk for VB-EKF
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Figure 7: d(ε) in presence of outliers
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Figure 8: Matrix traces for outliers

To simulate the OOSM multiple-sensor estimation sce-
nario, the generated vision-sensor data was sampled at
∆t1 = 0.05 sec and ∆t2 = 0.1 sec, and the latter
was delayed by δtd = 0.09 sec to account for pro-
cessing delay. The Target was simulated to posses ini-
tial velocities, ω0 = [0.1125 1.5 −1.1]

T and ṙ0 =

[0.01 −0.01 0.02]
T . The OOSM-EKF was required

to optimally estimate the state using the algorithm 2 and
its true state error covariance Πk was compared to the
same metric for No − OOSM -EKF. Figure 9 demon-
strates that multiple-sensor estimation with delays can
cause large tracking errors. Furthermore, in figure 10, one
can verify that the estimated velocity without OOSM, ˘̇r,
has an oscillatory behavior due to the delay. In contrast,
the OOSM-EKF state ˆ̇r tracks the real velocities ṙ.
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Figure 9: Πk in presence of processing delay

samples500 1000 1500 2000 2500 3000 3500 4000 4500 5000

ṙ
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Figure 10: ṙk estimate with processing delay

In the second part of this analysis, the EKF was used as
an observer for providing state-feedback during PBVS.
In this sub-section, the observation model from section 4
and Σ2 define the dynamic system. The robot joints
were given a joint disturbance of variance 1e−3 rad/sec
while forward kinematics was simulated with error vari-
ances of 1e−3 and 1e−4 for each of the components of
position and orientation respectively. The process noise
and observation noise model covariance matrices for the
robot have not been derived in this paper and are set to
the values used for SIL. The set-point that was used for
the robot end-effector was rc,d = [0 0 1.5]

T relative
to the tumbling Target and the estimator was allowed a
convergence time of t = 5 sec before servoing com-
menced. The performance of the estimator described in
[3] was compared with the one presented here. Figure 11
demonstrates that Est-1 [3] is susceptible to estimation
errors because of egomotion uncertainty and robot dis-
turbances. The EKF proposed in this paper, Est-2, takes
advantage of robot’s sensory information to improve esti-
mates. Additionally, stable state estimates also imply less
jerky robot behavior. This is highlighted in 12, where the
PBVS [23] using state feedback from Est-1 [3], VS-1 ex-
hibits non-smooth servoing errors. The same visual con-
troller with Est-2 feedback, VS-2, not only produces less
errors, but also achieves the control objective with a less



jerky response.
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Figure 11: Estimation errors during PBVS due to egomotion
uncertainty
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Figure 12: Visual servoing error due to egomotion uncertainty

10. CONCLUSION

This volume of work proposes a novel estimation scheme
that specifically addresses the idiosyncrasies of a vision
sensor, namely, processing delay, variable noise charac-
teristics and a high outlier density. The results presented
in the previous section have highlighted the impact of
these issues and demonstrate the qualitative robustness
of the proposed scheme with the aid of estimator perfor-
mance metrics. Additionally, the proposed VB-OR-EKF
is computationally efficient. VB converges in 3 − 4 it-
erations and OOSM adds only three new variables that
need to be propagated in time. A new model was pre-
sented which utilized the robot’s sensory information to
improve the system’s state quality with an objective of us-
ing the estimator as an observer for the PBVS. Through
the results obtained from a SIL implementation, it was
inferred that this novel approach provides significant im-
provements in both estimation and PBVS. The methods
explored in this paper can seamlessly extend to terrestrial
PBVS applications as well. Due to the lack of modeled
robot dynamics there is a large estimation error (see, fig-
ures 11 and 12) as the robot initiates servoing action at
t ≈ 5 sec. By accounting for the motion dynamics of the
OOS, there is further scope for reducing estimation er-
rors. Finally, with the strong theoretical results obtained
in this paper, subsequent research naturally lends towards
evaluation of the proposed estimator with data collected
from the DLR-OOS.
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