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ABSTRACT 

The challenging autonomy demands of the Sample Fetch 
Rover mission require an on-board Absolute Localisation 
algorithm. This paper describes an algorithm that uses 
cross-correlation of rover-generated maps and reference 
data stored on-board to localise the rover. This algorithm 
is presented through its high-level working principles of 
operations, up to its verification and validation and 
finally its first preliminary test results obtained from 
simulations.  

1. INTRODUCTION 

Mars Sample Return is a joint NASA/ESA campaign 
consisting of three missions working together to return 
samples from Mars to Earth by the early 2030s. As part 
of this campaign, Sample Fetch Rover (SFR) is tasked 
with driving from the Sample Return Lander 2 (SRL2) 
landing site to a sample depot where the samples have 
been placed by NASA’s Mars 2020 Perseverance rover, 
collecting the samples, and transporting them to SRL1 in 
a timely manner. SRL1 will then place the samples onto 
the Mars Ascent Vehicle, which will carry them into orbit 
[1]. 

SFR is being developed by Airbus Defence and Space 
Ltd. as prime contractor, and its GNC (Guidance, 
Navigation and Control) subsystem [2] is heavily based 
on heritage from the ExoMars Rover Vehicle GNC [3]. 
This GNC subsystem features a Relative Localisation 
system based largely on visual odometry. However, the 
increased length of autonomous drives required by the 
SFR mission means that its rover position accuracy 
targets cannot be met with Relative Localisation alone - 
an on-board Absolute Global Localisation (AGL) 
algorithm is needed. 

AGL is required both during the traverse between SRL 
and the sample Depot (AGL-Traverse or AGL-T) and 
during the tube acquisition phase of the mission within 
the sample depot (AGL-Depot or AGL-D). The required 
accuracy is very different: approximately 10m for AGL-
T, based on the width of the expected traversable regions, 
and 10cm for AGL-D, based on the accuracy required for 
sample tube pick-up. This accuracy does not, however, 
have to be met starting from a “kidnapped robot” state 
where the rover location within the operational 

environment is completely unknown. Initial good 
estimates can be assumed to be provided by ground at the 
start of a period of autonomous driving, and the AGL 
algorithm must maintain these without further ground 
input. 

 
Figure 1 - Artist's concept of the Sample Fetch Rover 

approaching sample tubes (Credit: ESA [4]) 

This paper presents the algorithm, which Airbus have 
developed to implement this functionality and describes 
results of some of the testing which has been performed 
so far. 

2. PRINCIPLE OF OPERATION 

Due to the rover's high-level architecture constraints, the 
only on-board sensors that the rover can use for AGL are 
its cameras. Comparing rover images with reference 
image data stored on-board should allow localisation of 
the rover position with respect to those reference images. 
For AGL-T, reference images are available from Mars 
Return Orbiter’s (MRO) HiRISE instrument [5], with 
ground resolution of ~0.3m. Similarly, for AGL-D, the 
M2020 rover will generate reference images as it 
constructs the sample Depot. The resolution of these 
images is expected to vary from a few mm near the 
sample tubes, to a few cm over the wider Depot (due to 
geometrical considerations from the camera’s field of 
view and images’ resolution). In both cases, these images 
will also be used for mission planning, so localising the 
rover with respect to the images will allow it to execute 
the planned activities. This is important because it means 
that there is no need to localise the reference images 
themselves to 10m/10cm accuracy with respect to a 
Mars-fixed frame. 



 

 

In comparing the images, we must deal with the 
difference in vantage point. Because all three sets of 
images (SFR, M2020 and HiRISE) consist of stereopairs, 
a stereo-vision algorithm can be used to construct a point 
cloud representation of each scene. This may be 
orthogonally projected onto the horizontal plane, creating 
a co-aligned Digital Elevation Map (DEM) and Ortho-
Rectified Image (ORI), which we refer to generically as 
“maps”. The projection simplifies the comparison of the 
point cloud data without losing much information 
because of the rarity of overhangs in the Martian terrain 
the rover will encounter.  

This approach is particularly attractive for SFR because 
the heritage ExoMars GNC already builds a 4cm 
resolution DEM for autonomous navigation and hazard 
detection. Hence, an ORI can be constructed from the 
same stereo-vision point cloud without significant 
processing overhead. The benefit of comparing both the 
DEM and the ORI is that they are complementary: large 
elevation variations can cause shading and shadowing 
differences when the light direction changes, degrading 
the ORI comparison, but they also provide a strong signal 
in the DEM. 

While driving, SFR stops regularly to generate maps.  
Depending on GNC mode, this occurs every 2.7-5.0m 
and the maps have a field of view of 110-170 deg and a 
range of ~8m. In case this is not enough data for the map 
comparison, the AGL can combine maps from a series of 
stops before performing the comparison. 

Once the combined map is ready, comparison with the 
reference maps can be used to infer the likely position of 
the rover. In principle, the comparison could also give 
information about the rover heading, which is expected 
to accrue some error during a traverse due to the limited 
accuracy of Visual Odometry. In practice, we fix the 
heading when comparing the maps, but use the drift in 
position over the traverse to learn about the rover 
heading. This is achieved by passing the result of the map 
comparison to an estimator, which fulfils several 
objectives: 

1. Infer rover heading  
2. Reject outlier map comparison measurements 
3. Incorporate data from Relative Localisation 
4. Incorporate once-per-sol Sun-Sensing Heading 

Estimation (SSHE) measurements. These 
provide an independent source of heading 
knowledge, which is valid even if the terrain is 
too featureless for map matching.  

The output of this is an estimate of the transform between 
the Estimated Mars Local Geodetic (EMLG) frame, 
which is space-stabilised by Relative Localisation 
(RelLoc), and the frame in which the reference maps 
(RM) are given. If RelLoc was perfect this transform 
would be fixed, but it drifts due to RelLoc errors.  The 
EMLG frame is used by SFR for Navigation and Path 
Planning. Therefore the transformation can be used, for 
example, to transform a commanded path from the RM 

frame into the EMLG frame where it can be driven using 
RelLoc without being affected by the long-term 
accumulating RelLoc drift. 

A high-level overview of the algorithm is given in Fig. 2, 
below.  

 
Figure 2 Overview of AGL Algorithm 

The following sections describe each component in more 
detail. 

3. MAP COMBINATION ALGORITHM 

The rover map data is constructed in the RelLoc-
stabilised EMLG frame and accumulated into a 
combined map buffer centred on the rover position. The 
ORI data is normalised to make it approximately 
independent of image exposure and the DEM elevations 
are expressed in the approximately fixed EMLG frame, 
so the map data which is being combined should usually 
be consistent. However RelLoc errors and illumination 
changes (for example when the combined map stretches 
over multiple sols) can still occur. To mitigate these when 
the existing and new data overlap, an additional 
correction is applied to the existing data to remove the 
mean discrepancy on the overlap region. The overlapping 
data itself can be set to a weighted average of existing 
and new data, but in practice because the new data is 
usually closer to the rover and hence more accurate we 
simply use the new data. 

4. MAP COMPARISON ALGORITHM 

There are many possible approaches to align a pair of 
images. One group of approaches begins by detecting 
features in each image, and then aligns those features. In 
a Mars rover context, matching of ORI features has been 
used by ground to localise the MER Spirit rover [6]. 
Another group of approaches computes a pixel-by-pixel 
metric expressing the difference between the images, and 
chooses the alignment that minimises this difference. 
This has the benefit of implementation simplicity. As 
searching over rotations is not needed for SFR, the 
amount of computation is acceptable. 



 

 

Approaches of this type have been used for DEM 
alignment in several papers. Ref [7] used DEM alignment 
in the first phase of their localisation process. Their 
matching metric is a weighted combination of the RMS 
deviations in elevation and slope. They give an example 
where the localisation error relative to a manual 
localisation of MER-A (Spirit) near the Home Plate area 
is 0.22m, but they note that errors will be larger in 
relatively flat areas. Ref [8] presents an experimental test 
of DEM alignment using a normalised cross-correlation 
metric. Using a 1m resolution reference DEM like for 
HiRISE, and 15m range rover DEMs assembled within a 
30x30m area, they obtained ~2m accuracy after 
combining measurements with a particle filter. However, 
their reference 1m/pixel DEM was created by down-
sampling a 5cm/pixel DEM created from UAV images. 
The vertical precision may therefore be superior to that 
of the HiRISE DEMs. In the SFR context, [9] and [10] 
propose aligning DEMs with an un-normalised cross-
correlation of DEM slopes, for an occasional global pose 
correction to their SLAM-based localisation. In a field 
test with their rover on Tenerife they found localisation 
accuracies better than their global DEM resolution 
(<0.5m). Returning to Mars rover data, [11] compared 
280 MSL DEMs to HiRISE DEMs using an Iterative 
Closest Point matching approach. They found (for 
example) that with a 16m radius local DEM and 1m DEM 
resolution 79.2% of localisations had an error <5m.  

ORI alignment based on normalised cross-correlation 
was examined in [12]. They tested their algorithm in 
simulations of a lunar rover equipped with a LIDAR 
sensor. Using 25cm/pixel orbital images (similar to the 
HiRISE images we would use for AGL-T) they found a 
15x15m rover ORI to give better than 1m accuracy at 
94% for search windows up to 100m, provided the 
illumination direction was unchanged from the orbital 
images. For an equatorial sun position, performance 
remains roughly level until the solar elevation deviation 
reaches 40° (N.B. SFR will operate at a latitude of 18.4°). 

As in several of the mentioned implementations, the SFR 
AGL uses a zero-mean normalised cross-correlation. 
This is applied to the gradients (X- and Y-differences) of 
both the DEM and the ORI. This has the following key 
advantages: 

● It works even if the amount of overlap between 
the maps varies with the alignment to be tested. 

● It is naturally resilient to varying data quality 
over the maps, in contrast to e.g. a sum-squared-
difference criterion, which may move the maps 
to ensure the overlap is in a low-noise area. This 
is useful because it is complex to rigorously 
quantify the error in the maps produced by 
stereo-vision. 

● The zero-mean criterion makes it largely 
unaffected by overall DEM slope errors (which 
produce a shift in the gradient) 

● The normalisation, although not so important 
for the DEM, allows for the fact that the 

absolute ORI magnitude depends on lighting 
and atmospheric conditions, as well as details of 
the camera, which could in principle be 
accounted for but at the cost of some 
complexity. 

● Using the same algorithm for DEM and ORI 
simplifies the algorithm development, tuning 
and validation. 

As already noted, the AGL does not search over 
rotations. However, generally there is an arbitrary 
rotation between the EMLG and RM frames. The 
combined map is rotated using the latest estimate of this 
rotation to align it as well as possible with the RM frame 
before comparison. 

5. ESTIMATOR ALGORITHM 

The estimator component of the algorithm is a particle 
filter (see for example [13]), modelling a probability 
distribution over EMLG→RM frame transformations 
plus a pair of parameters describing bias in the Visual 
Odometry increments. Specifically, for a reference point 
in the EMLG frame near the rover the particle state 
variables are: 

1. The X and Y coordinates of the reference point 
in the RM frame 

2. The heading rotation between the EMLG and 
RM frames 

3. A scale factor error on the RelLoc increments 
4. A heading drift rate 

The propagation step of the estimator depends only on 
the EMLG-frame position change since the last update. 
A tuneable process-noise term whose variance is 
proportional to the magnitude of the position change is 
added to each component to model the RelLoc drift 
uncertainty. 

The estimator undergoes a separate update process 
whenever a DEM or ORI measurement is made. The 
position of the correlator peak (with quadratic 
interpolation to obtain the sub-cell part) gives the best- fit 
alignment of the rotated combined map and reference 
map. Because the true rotation is unknown, the alignment 
must be turned into a measurement of the RM-frame 
coordinates of a specific “measurement point” (MP) in 
the EMLG frame. The MP is set to the centre of the 
bounding box of the combined map, which should be 
positioned more accurately than a point near the edge 
assuming features are spread across the map. Each 
particle’s weight is updated based on how close the 
particle’s transform places the MP to its observed RM-
frame location with the best-fit alignment. The weight 
formula behaves as a Gaussian likelihood for small 
offsets, but is saturated for large offsets to limit the effect 
of outliers - this is the only part of the current design that 
uses the power of the particle filter (compared to e.g. a 
more compact Extended Kalman Filter design). The 
parameters of the update weight can be configured to 
depend on the peak-to-root-mean-square ratio of the 



 

 

correlator (a kind of signal-to-noise estimate) as this is 
observed to correlate with measurement quality. The 
estimator can also be updated with SSHE measurements 
[2]. This uses a similar saturated update weight 
depending on the particle’s rotations only. 

6. VERIFICATION AND VALIDATION 

So far we have carried out off-line tests of the AGL 
algorithm using prototype C code. Flight-representative 
LEON4 hardware [14] was used for a subset of tests to 
assess execution time. Rover and reference maps were 
generated from a mixture of sources including 
simulation, HiRISE and rover field trials. Details of a 
subset of these tests and their preliminary results are 
given in the following sections. 

The next phase of testing focuses on incorporating the 
AGL outputs into the full GNC chain, leading to field 
trials in Airbus’ Mars Yard and planetary analogue 
environments. 

7. EARLY AGL-T COMPARISON RESULTS  

For AGL-T the performance depends on the quality of 
the HiRISE maps, as well as the quality of the rover maps 
which varies with range from the rover. To get a first idea 
of the feasibility of AGL-T, it is possible to cross-
correlate overlapping HiRISE maps generated from 
different stereo-pairs. Fortunately, such an overlapping 
pair exists for part of the Jezero region. The width of the 
region to correlate (perpendicular to the traverse 
direction) must not produce rover map errors exceeding 
the HiRISE ones. Results of this analysis for a 10m x 15m 
ORI and 40m x 15m DEM are shown as the blue lines on 
Fig. 3. In this case, the maximum range of the rover map 
would be 7.5m. 

For these map sizes the HiRISE errors should be larger 
than SFR errors, so one might think the HiRISE-to-
HiRISE comparison would be conservative.  However 
MRO’s orbit means a particular location is always 
imaged at a similar time-of-sol, limiting illumination 
changes. Moreover the ground point-of-view of the rover 
may cause systematic differences. To account for this we 
can compare actual rover maps from Curiosity [15] to 
HiRISE maps of Gale crater. See Fig. 6 for data from one 
ORI comparison with an SFR-like max range of 8m. A 
good DEM matching requires an increased range - see for 
example Fig. 4 (15m range). 

To transfer this analysis to the Jezero terrain where SFR 
will drive, we have used Curiosity data to tune a model 
which up-scales and adds noise to the HiRISE maps. This 
relies on the fact that there are overlapping HiRISE maps 
for part of Curiosity’s traverse.  

 

 

 

First, Curiosity panoramas with varied terrain were 
selected. ORI matching of a full panorama at 10m range 
was used to obtain a “ground truth” alignment. The 
panorama maps were then sliced in angle and range to 
create a set of maps with some good and some bad 
matches. Then the upscaling/noise parameters were 
tuned so that the application of the model to one of the 
overlapping HiRISE maps reproduced the observed 
performance of the Curiosity comparisons (using the 
other HiRISE map as a reference). See Fig. 5 for example 
results. Applying this to the Jezero HiRISE comparison 
process gives the results shown in magenta on Fig. 3. 

These results show the ORI matching performs much 
better than the DEM matching. A substantial subset of 
the DEM matching results are distributed uniformly 
across the searched alignments, meaning they convey no 
information. For a more precise analysis it is necessary to 
focus on the expected SFR traverse paths, which are 
smoother and less textured than the Jezero average. ORI 
matching remains successful with a frequency, which 
allows the estimates to meet the AGL-T requirements, 
but DEM matching, provides negligible benefit.  
Therefore, we expect AGL-T to use only the ORI. 

Simulations of the full AGL-T performance (including 
the estimator) using this HiRISE map up-scaling model 
along a subset of possible SFR paths show good position 
accuracy. In addition, the average LEON4 execution time 
per rover stop is smaller than 5s which is within rover 
timing budgets. 

A limitation of this analysis is that it requires two 
overlapping HiRISE maps, which are available for only 
a fraction of SFR’s possible operational area. It might 
seem that one could use the difference of overlapping 
HiRISE maps to estimate the HiRISE error, and then add 
this to another map to test the comparison where 
overlapping maps are not available. However, this turns 
out to give extremely optimistic results. To see this one 
can repeat the previous DEM comparison analysis 
replacing the comparison between DEM2 and DEM1 
with a comparison between DEM2 and 
DEM2+R(DEM1-DEM2) where R is a random shift. In 
that analysis, ~80% of samples have an error < 1.5m. This 
occurs because the noise in DEM2 acts as a feature, 
which AGL-T can use to align the maps. 



 

 

 
Figure 3 - Distribution of HiRISE map comparison alignment 
errors. Top: ORI with 15m x 10m. Bottom: DEM with 15m x 

40m. The red lines arise from random measurements 
uniformly distributed over the searched window, conveying no 

information.  

 
Figure 4 - Example of Curiosity DEM correlations inputs and 

outputs with a large range of 15m. 

  
Figure 5 - Example of measurement errors for MSL to HiRISE 
comparison and synthetic MSL (based on HiRISE) to HiRISE 

ORI comparison. 

 
 

 
Figure 6 - Example of Curiosity ORI matching with SFR-like 
range of 8m. Top: example input NavCam image. The green 
contour shows the part of this image used to build the ORI. 

Bottom: correlation inputs and outputs. 

 



 

 

8. EARLY AGL-D COMPARISON RESULTS 

Two data sources have been used to test in-Depot map 
comparisons, as described in the following subsections. 

8.1. Erfoud Trial Results 

One set of data comes from the rover trial described in 
[16]. This consists of a set of NavCam-analogue stereo-
pairs with cm-level GPS ground-truth localisations, 
along with UAV ortho-images of the test sites. A UAV 
DEM is also available, but the resolution is not sufficient 
to resolve detail at the 4cm scale. 

Comparison of ORI matching and GPS data shows a ~2m 
offset, varying slightly as the rover moves and turns.  
Fitting the offset to an 8-parameter model (2D global 
affine transform + rover-frame translation) reduces the 
residual error for strongly correlating ORIs to ~1-2cm. 
The fit is carried out separately for each traverse.  Fig. 9 
gives examples of the residual error distribution.  

 
Figure 7 - Erfoud test trials site called “Mummy” in Morocco 

8.2. SFR Offline Simulator Environment 

Simulated maps may be created using the SFR Offline 
Simulation Environment (OSE). This includes models of 
the rover hardware (including the Inertial Measurement 
Unit, cameras, pan-tilt unit and locomotion subsystem) 
as well as the GNC algorithms. Ideal camera images are 
rendered using [17] before being degraded to account for 
hardware-specific effects.  

The simulated maps have the advantage of 
controllability. It is also possible to produce a reference 
DEM that was missing from the Erfoud tests. To produce 

reference maps, the rover is driven through the simulated 
terrain, and the local maps are combined by averaging in 
a crude representation of the process of M2020 imaging 
the Depot. Local rover maps are then generated by 
driving the rover along 3 more paths.  

 

 

 

Figure 8 – Example results from Erfoud test trials in Morocco 

Figure 9 - Residual errors between ORI comparison positions and GPS data for 2 Erfoud traverses 



 

 

Matching errors are shown in Fig. 11 for 3 scenarios with 
varying rock density/size (though the maximum rock 
diameter is 20cm in both cases because sample tubes will 
not be placed near large rocks). See Table 1 for details.  
This gives an example of the complementarity of DEM 
and ORI matching - larger rocks increase ORI errors 
when the sun direction differs, but they also allow DEM 
matching to succeed. 

Table 1 - Example rock coverage scenarios (added to 
flat base DEM) for OSE testing 

Depot 
Rock 

Scenario 

Mean Local Map 
Fractional Rock 

Coverage 

Mean Local Map 
Max Rock Radius 

1 0.39% 7.1cm
2 1.17% 8.9cm
3 1.71% 9.2cm

9. EARLY AGL-D ESTIMATION RESULTS 

The Depot reference maps will be constructed from 
M2020 rover imagery. Due to bandwidth limitations it 
may not be possible to map the full area of the Depot. 
However, the tight 10cm position accuracy requirement 
only holds in the vicinity of a sample tube. This enables 

a conservative scenario where an “island” around each 
sample tube is mapped. The rover drives between 
samples using RelLoc, and then AGL-D updates with 
absolute position information once the island is reached. 

We have simulated the full algorithm in this scenario, 
using a model of Visual Odometry performance based on 
earlier breadboarding. Fig. 10 shows some example 
results for 1000 20m island approaches, using Erfoud 
data. The position estimation performance is acceptable 
and the average run time of the algorithm (including 
propagation when driving towards the island, and the 
updates when it is reached) is < 1.5s. 

10. CONCLUSIONS 

Despite the challenging SFR mission constraints and 
context, we have developed a single algorithm which, 
provided with appropriate reference data, appears to meet 
SFR’s absolute localisation needs both in the traverse 
between SRL and the Depot and within the Depot itself. 
Adding to the algorithm performance measurement, the 
average execution time on the LEON4 hardware has been 
measured as <5s on all scenarios, which is compliant with 
the rover timing budgets. 

Figure 10 - Final AGL-D estimation error when reaching the mapped area around a tube. The island radius is 2.8m. Left: 2D 
position error. Centre: heading error. Right: mean AGL-D algorithm execution time on flight-representative LEON4 HW (does not 

include local map generation). 

 

Figure 11 - Example of DEM (left) and ORI (right) matching errors for SFR OSE maps. 
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