
VISION-BASED OBSTACLE DETECTION FOR PLANETARY ROVERS

Olivier Clerc1,2, Levin Gerdes2,3, and Martin Azkarate2

1Robotic Systems Lab, ETH Zürich, Zürich, Switzerland
2ESA-ESTEC, European Space Agency, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands, Email:

firstname.lastname@esa.int
3Department of Systems Engineering and Automation, University of Málaga, Málaga, Spain

ABSTRACT
Communication and computing performance constraints
of planetary rovers limit their traverse distances. More-
over, motion planning for these systems is a conserva-
tive matter. Indeed, such rovers are expensive and out
of reach for physical help, and therefore, any collision
during a mission critically endangers its success. Never-
theless, considering future missions such as Mars Sample
Return - Sample Fetching Rover (SFR) that require daily
traverses extending to hundreds of meters per Sol, there
is a necessity for a high degree of autonomy. While au-
tonomous navigation concepts have greatly improved for
applications on Earth, they remain unsuited for planetary
rovers. Considering our previous works on navigation
architectures [3, 5], this paper proposes a real-time Ob-
stacle Detector method to improve navigation efficiency
by creating a medium to close range local obstacle map
through the use of images from a stereo camera.

1. INTRODUCTION
Motion planning for planetary rovers is a conservative
matter. Indeed, such rovers are expensive and are out
of reach for physical help, and therefore, any collision
during a mission critically endangers its success. There-
fore, there is a need to plan the rover’s path to reduce
risks to the minimum. Moreover, for missions to Mars,
direct driving is unfeasible. Not only does the round trip
communication time between Earth and Mars takes from
5 to 20 minutes, but contact with ground can be reached
only twice per Sol. Even with the help of orbital data and
downloaded images from the rover, planning such long
traverses with no obstacles on its route proves to be a
practically impossible task. Considering the high preci-
sion of localization used in future missions such as the
ExoMars rover, Townson et al. (2018) [11], it still suffers
from inaccuracies from the absence of a Global Naviga-
tion Satellite System (GNSS). Moreover, the orbiter res-
olution is not high enough to detect all obstacles on the
possible rover path. Considering future missions such as
Mars Sample Return - SFR that require daily traverses
extending to hundreds of meters, there is a necessity for
a high degree of autonomy.
While autonomous navigation concepts have greatly im-
proved for applications on Earth either using technologies
like LiDARs and Machine Learning based algorithms,
they remain unsuited for planetary rovers. These solu-

tions come with significant drawbacks for efficient plan-
etary exploration missions. One notable drawback is the
high computational complexity of a robust mapping, lo-
calization, and path planning system, which is not com-
pliant with the current capabilities of planetary rovers or
would at least limit the effective mission lifetime due to
additional stops for computations. Indeed, the high ra-
diation levels on Mars are detrimental to sensitive mod-
ern processors; therefore, planetary rovers need specific
types of fault-tolerant microprocessor architectures such
as LEON [2]. For example, one of the latest rovers to
have reached Mars, Perseverance, uses the same CPU ar-
chitecture that powered the 1998 iMac G3 [1]. Therefore
to safely navigate a planetary environment, a rover would
need to drive slowly and regularly stop to solve the lo-
calization and motion planning problems for the next few
meters ahead. As explained in our paper on rover Guid-
ance, Navigation, and Control (GNC) architectures [3],
a way to solve this issue would be to separate the au-
tonomous navigation problem into two distinct situations
using an initial low-resolution map of the rover’s land-
ing site created from previously acquired orbital data in
the shape of satellite images. This map is used to give
an initial path where the rover will avoid risky and non-
navigable areas such as craters and large boulders. How-
ever, the map’s resolution is too low to include small ob-
stacles. Nevertheless, it can help determine specific char-
acteristics of the traversability difficulty of the area where
the rover should perform the traverses. These character-
istics, in turn, can be used to classify sections of the tra-
verses as either complex or benign. In 2019 [3], we pro-
posed a two-level navigation system that relies on this dif-
ficulty distinction. A low-level Efficient Navigation con-
cept designed for easy to moderate terrain difficulty and
a high-level Full Navigation system for complex terrains
as shown in Figure 1.
The Efficient Navigation system, therefore, aims to allow
for faster and longer traverses in pre-assessed benign ter-
rain and is the one for which this project proposes the
developed obstacle detection algorithm. Ground control
uploads an initial Global Path which can be, for exam-
ple, two waypoints from the rover’s current pose to the
desired position at the end of the benign terrain or at the
end of that Sol. With the help of the previously stated
map, the produced path avoids the major obstacles on its

2

Figure 1. Schematic concept of the two-level GNC architecture for Autonomous Navigation of Planetary Rovers [3].

path. Using a stereo camera named LocCam and the Iner-
tial Measurement Unit (IMU), the rover continuously per-
forms localization to update its relative pose in its refer-
ence frame in order to drive along the path autonomously.
However, the rover is still at risk of crashing into an ob-
stacle missed in the low-resolution map. This issue is
where the Hazard Detector comes into effect.
The hazard detector used in Azkarate et al., 2019 [3] that
is in the center of the lower half of Figure 1 is presented
in Gerdes et al., 2020 [5]. This proposed hazard detec-
tor relies on stereo images obtained from the LocCam.
Using these images, the rover computes stereo disparities
on a small region of interest to maximize efficiency and
compares them to a pre-calibrated set of stereo disparity
values for each pixel within the region of interest. These
values are calibrated by measuring each pixel’s stereo dis-
parity on a flat floor. This method is highly efficient,
but its major drawback lies in the flat ground assump-
tion, which leads to false positives and negatives on un-
even ground since the hazard detector considers neither
the orientation of the rover nor the slope of the terrain.
Such a system is only used for small ranges up to 50 cm
[5] and can be interpreted, and was intended, more as an
emergency safety feature. Such a small range is efficient
to avoid crashing into an obstacle but can lead to less
efficient paths than detection approaches with a greater
range.
Therefore, this paper aims to improve the existing hazard
detector in the sense of being still able to detect danger-
ous obstacles while improving navigation efficiency. As
stated above, autonomous navigation concepts have im-
proved and diversified over recent years, and there is a
need to define the technology and type of algorithms used
for this project.
Two types of sensors, laser-based, and cameras, are com-
monly used for obstacle detection. Even though laser-
based technologies such as Time-of-Flight cameras and
LiDARs offer a direct value of ranges that the rover’s
computer will otherwise need to compute on cameras
with more complex algorithms such as stereo match-
ing, they also have not yet been widely used in plane-

tary rovers and have a low Technology Readiness Level
(TRL). A lot of hardware development still has to be
done, and thus they will not be used in missions such as
ExoMars and SFR. Moreover, LiDARs consume much
more power than cameras, and it is essential to note
that power consumption is a deciding factor in planetary
rovers. Camera sensors are also commonly used for au-
tonomous navigation, and fields such as Visual Simul-
taneous localization and mapping (Visual SLAM) have
matured over the years. These factors contribute to the
choice of cameras, and more precisely, to stereo cameras
that allow for easier 3D information extraction. The same
camera as the one presented in Gerdes et al., 2020 [5], the
LocCam, is chosen for the development of the obstacle
detection system proposed in this project.
Regarding the type of algorithms that will be used, com-
puter vision-based autonomous navigation is a mature
and evolving subject. In more recent years, accuracy
in several computer vision subjects such as object detec-
tion, classification, and segmentation have been improved
with the help of Deep Learning models like Convolu-
tional Neural Networks [12]. However, machine learn-
ing still significantly lacks interpretability and determin-
ism despite its impressive results. The algorithms used
for space missions are conservative since a single mis-
take can lead to the crash of the rover and the premature
end of a mission that has been planned for many years.
Therefore, it is commonly favored to use deterministic al-
gorithms such as “classical” computer vision. Moreover,
Deep Learning models often require high computational
power or specific processors such as Graphics Processing
Units (GPU) which, similarly to LiDars, require a signif-
icant amount of power and have not been fully developed
for space applications yet.
The development of the model will therefore be based on
a classical computer vision approach with data obtained
from a stereo camera and the pose obtained via localiza-
tion as used in the Efficient Navigation system.

2. MODEL OVERVIEW
The system assumes a pair of images from a stereo cam-
era and the current rover pose as input. The obstacle

3

detection will then perform the following list of image
processing and obstacle classification methods in order
to detect obstacles:

1. Segmentation

2. Stereo Matching and Height Extraction

3. Obstacle Classification

The location of those detected obstacles is the output of
the system.
2.1. Segmentation
The model performs the initial detection on the left stereo
image via segmentation to isolate regions of interest for
the subsequent stereo matching operations. The main
goal is to reduce the amount of computation done later,
and therefore the segmentation aims at extracting only
the regions where candidate obstacles are on the image.
Image Segmentation is the process of partitioning an im-
age into distinct regions. It is a matured Image Processing
technique that has significantly evolved over the years,
and many methods exist nowadays, such as Threshold-
ing, Clustering, and Region Growing. The simplest and
fastest case of Image Segmentation is Thresholding. Its
most basic usage outputs a binary image where each pixel
is classified depending on the “lesser than” boolean com-
parison between the pixel’s intensity value I(u, v) and a
given threshold t.
The main issue behind thresholding is that it has no
way of being robust to illumination changes as the same
threshold is given globally for all pixels in the frame.
In adaptive thresholding, the intensity value of a pixel
is compared not with a global threshold but with re-
gard to the values of its neighboring pixels. Whereas
global thresholding only uses a threshold, in the adap-
tive method, both the BlockSize, i.e., the size of the
neighboring square in which pixels are considered, and
the threshold t need to be considered.
The method used for this model is with a Gaussian-
weighted average of the neighboring pixels, which im-
plies a larger weight for pixels that are closer to the
pixel of interest (u, v). The method initially computes a
Gaussian-weighted average µ̂(u, v), and thresholds using
the following equation:

f(u, v) =

{
0, if I(u, v) < µ̂(u, v)− t

1, otherwise
(1)

Another thing to bear in mind is that the model consid-
ers the pixel’s intensity, as mentioned above. However,
the images have three channels, i.e., RGB. Therefore, one
way would be to perform the adaptive thresholding sepa-
rately on each channel, but the classification would then
be on red, green, and blue separately. Not only would
it not take the full color into account, but more specific
information can be extracted from the images. Another
way is to transform the initial image from RGB to HSV,
which more closely align with the way human vision per-
ceives color-making attributes.
The overall operations to segment the left stereo image
are as explained in the following:

1. RGB to HSV transform.
2. Generate empty image I final of same size as input

image with all pixels set to 0.
3. For each channel we intend to segment:

(a) Perform Median Blurring to delete noise.
(b) Morphological Closing to link similar neigh-

bouring regions.
(c) Morphological Opening to delete remaining

noise.
(d) Adaptive thresholding of corresponding

BlockSize and threshold t for the given
channel.

(e) Activation of all “1” labeled pixels in I final

4. Morphological Opening on I final to delete noise.
5. Morphological Dilation on I final to expand the

segmented area to capture borders of obstacles.
6. Get the contours and the Bounding Boxes of each

individually segmented area.

The final result of the segmentation process can be seen
in Figure 2.

Figure 2. Original image with drawn contours and
Bounding Boxes

2.2. Stereo Matching and Height Extraction
The model produced a list of candidate obstacles through
segmentation and now can move on to the successive
step. In order to gain more knowledge about the given
candidate obstacles, this process intends to extract 3D in-
formation using the following three subprocesses: Obsta-
cle Stereo Matching, Feature Extraction and Matching,
and Height Extraction
The desired output of this process is a list of candidate
obstacles’ locations and their corresponding heights and
confidence scores.

2.2.1. Obstacle Stereo Matching
Once again, the goal of the model is to avoid useless
computation. In order to do so, this process aims at find-
ing regions where matching features would be located on
the right image using knowledge of the location of the

4

candidate obstacles on the left image. Indeed, match-
ing features from a small region in the left image with
features extracted over the entire right image would re-
sult in a large amount of computation to compare non-
corresponding features. Therefore, the idea behind it is
to use the bounding boxes of the left image obstacles and
locate their right image counterparts. The technique used
for this model is a specific type of template matching.
Considering that the objects to match do not go under
large homomorphic transformations from left to right
stereo images, that for each object on the left image,
the matching object on the right image will be shifted
to the left, and assuming little stereo image rectification
a specific Template Matching technique customized for
the given problem is used on a cropped part of the right
stereo image, as can be seen in 3.
Considering T as the template to match, I the test image,
(u, v) the pixel of interest on I where the similarity is
measured, (u′, v′) varying from (0, 0) to (width, height)
of the template and the similarity measure used being
the Normalized Correlation Coefficient, the similarity for
each (u, v) coordinate on I goes as follows:

R(u, v) =
∑

u′,v′ (T
′(u′,v′)·I′(u+u′,v+v′))√∑

u′,v′ T ′(u′,v′)2·
∑

u′,v′ I′(u+u′,v+v′)2

(2)

2.2.2. Feature Extraction and Matching
Now that we have a set of corresponding bounding boxes
between left and right images, some more precise stereo
corresponding information can be extracted through the
use of Features. Features are pieces of information link-
ing a position on an image having specific properties.
They usually describe edges, points, or objects such as
the templates used before. In this model, three types of
features operations will be used: Feature Detection, Fea-
ture Extraction, and Feature Matching
There exist multiple ways of detecting features, such as
Corner Detection, Edge Detection, Blob Detection, and
Ridge Detection. Whereas Corner, Edge, and Ridge de-
tections aim at finding sudden changes in the image’s
color, intensity. The type of Feature Detection that was
picked for this model is a Corner Detection method.
More precisely, it is the Features from Accelerated Seg-
ment Test (FAST) [10] algorithm. The main advantage
of FAST is the reason itself of its name; it is computa-
tionally very efficient and allows for quick detection of
numerous features.
For each candidate obstacle, features are then detected for
the left and right regions where they appear.
Where the FAST algorithm strength comes in computa-
tional efficiency, it lacks complexity in describing a fea-
ture and will later conclude to a poor feature matching
process. One of the most commonly used feature descrip-
tors is the Scale-Invariant Feature Transform (SIFT) [8].
Therefore, all features detected with the FAST detector
are then described using the SIFT descriptor for later
comparison.
Feature Matching relates to linking corresponding fea-
tures from different images. After going through the fea-
ture detection and feature extraction processes, the sys-
tem is given corresponding sets of features descriptors

for each candidate obstacle in both left and right images.
Therefore, this process aims at finding pairs of matching
features for each candidate obstacle. The ultimate reason
is that 3D information regarding the obstacles will be ex-
tracted from these pairs of features through triangulation.
For each candidate obstacle, the matching algorithm will
try to link each left image feature to a feature on the
right image’s corresponding obstacle through the use of
a search distance algorithm. The similarity measure used
varies on the type of descriptor. For this model, the use
of a Brute-Force Matcher with an added ratio test as pro-
posed by D.Lowe [8] in his paper introducing SIFT for
accurate results. The goal of this ratio test is to only
consider the right image’s feature that matches uniquely
with fl. It assumes that the features to match have only
one correspondence in the right image, which fits our use
case.

2.2.3. Height Extraction
Through the help of the feature extraction and matching
process, we are now given, for each candidate obstacle, a
set of corresponding pixels locations on both the left and
right images. In order to extract 3D information from
this data, we perform triangulation. Triangulation is the
process of extracting the 3D position of a point from two
corresponding points on different images with the knowl-
edge of the camera parameters and the pose of the second
camera with respect to the first one which returns a set
of points in the world frame for each candidate obstacle.
The height and its corresponding confidence score can
therefore be extracted from each set. But before comput-
ing the height, a last outlier-removal process based on the
distribution of the points’ depth D is used.

D =
√

X2
lc + Y 2

lc + Z2
lc (3)

We compute the depth of all matched points for each can-
didate obstacle and fit a Normal Distribution by comput-
ing the mean and standard deviation of the depths. We
can then remove all points that are further than a given
amount of standard deviations.

The height h is then computed simply by computing the
difference of Zw values of all points in the set:

h = max(Zw)−min(Zw) (4)

The confidence associated with the height depends on
three factors:

1. cmd associated with the median depth µd. It relates
to how far the obstacle is from the rover. Further ob-
stacles tend to correlate with less precision in height
estimation and impose less risk to the rover.

2. cstd associated with the depth’s standard deviation
σstd. It relates to how spread in depth the matched
features are. If the depth varies greatly, it usually
implies that there are many outliers or that multiple
obstacles are bundled into one candidate obstacle.

3. cv associated with how vertically spread the
matched features are in the bounding box of the can-
didate obstacle. As the bounding box encompasses

5

(a) Left image with bounding boxes covering candidate obsta-
cles.

(b) Right image with area of interest covered by Normalized
correlation score and the corresponding bounding box placed
at the maximum. The opencv rainbow colormap is used. Red
is low score, green is medium score, and purple is high score.

Figure 3. Obstacle Matching Process

the candidate obstacle from top to bottom, if features
are only matched in the lower half, for example, the
extracted height will be lower than what it truly is.

The overall confidence ch is the harmonic mean of the
three confidences stated above:

ch =

(
c−1
md + c−1

std + c−1
v

3

)−1

(5)

2.3. Obstacle Classification
The segmentation and height extraction processes have
supplied the model with a list of candidate obstacles with
corresponding locations and confidence scores. The ob-
stacle classification process’s goal will be to determine
if these candidate obstacles are actual obstacles or not.
Contrary to the previous processes that independently de-
tect candidate obstacles from previous images, the obsta-
cle classification will consider previous candidate obsta-
cles and newly detected ones to keep a memory of the de-
tections. The method used to keep track of the detections
is called Bayesian Inference. It uses Bayes’ theorem to
iteratively update the probability of a hypothesis as more
data from the sensors becomes available.
In our case, the hypothesis is the occurrence of an ob-
stacle at a given location. To be able to separate spa-
tial elements as regions, the area around the rover is
discretized as a grid-like 2D occupancy local map with
each cell representing a 10 × 10 cm2 region. Please
note that the following equations have been retrieved
from the Robot Mapping course of the Albert-Ludwigs-
Universität Freiburg [6]. We consider the probability dis-
tribution of the map m as the product of the probabilites
over the cells mi. We can estimate the map given sensor
data z1:t (i.e., the obstacle detection algorithm) as well as
the pose of the rover x1:t over multiple detections from
the initial to the tth timestamps.

p(m|z1:t, x1:t) =
∏
i

p(mi|z1:t, x1:t) (6)

Where p(mi|z1:t, x1:t) can be rewritten using Bayes’
Rule and Markovian properties. The ratio of the prob-
ability of a cell being occupied divided by the probability
of a cell being not occupied results in:

p(mi|z1:t,x1:t)
p(mc

i |z1:t,x1:t)
=

p(mi|zt,xt)p(mi|z1:t−1,x1:t−1)p(m
c
i)

p(mc
i |zt,xt)p(mc

i |z1:t−1,x1:t−1)p(mi)

= p(mi|zt,xt)
1−p(mi|zt,xt)

p(mi|z1:t−1,x1:t−1)
1−p(mi|z1:t−1,x1:t−1)

1−p(mi)
p(mi)

(7)
The main issue arising from such a formula is the compu-
tational demand of performing these operations. A way
of reducing the complexity is to switch to the Log Odds
Notation. Where we actually use the logarithmic value of
the ratio:

l(mi|z1:t, x1:t) = log

(
p(mi|z1:t, x1:t)

1− p(mi|z1:t, x1:t)

)
(8)

And the ratio in Eq. 7 becomes a sum:

l(mi|z1:t, x1:t) = l(mi|zt, xt) + l(mi|z1:t−1, x1:t−1)− l(mi)
(9)

Considering the initial probability of a cell being occu-
pied to be unknown: p(mi) = 0.5, the sensor model
p(mi|zt, xt) is computed depending on the height con-
fidence chi for cell i:

1. If an obstacle has been detected on cell i and has a
greater height than a given threshold:

p(mi|zt, xt) =
1 + chi

2
(10)

2. If an obstacle has been detected on cell i and has a
lower height than a given threshold:

p(mi|zt, xt) =
1− chi

2
(11)

3. If no obstacle has been detected on cell i:

p(mi|zt, xt) = cnd (12)

6

With a chosen constant cnd ∈ [0, 0.5]. Implying
the confidence that there are no obstacles given that
cell i is in the field of view.

Furthermore, it is essential to note that only the cells in
what is considered to be the field of view of the stereo
camera are updated.
We have yet to identify what is an obstacle. First of all,
from the set of heights and their corresponding confi-
dences, we consider a region to have a potential obsta-
cle if its height is greater than a given threshold for the
rover used, making driving over such a height detrimen-
tal for a safe traverse. Finally, if the height is indeed
greater than the threshold, Eq. 10 is used to determine
p(mi|zt, xt). If the detected obstacle has a lower height
than the threshold, Eq. 11 is used. However, if nothing
has been detected on a pixel in the field of view, Eq. 12 is
used to determine p(mi|zt, xt) which is finally converted
to l(mi|zt, xt) using Eq. 8 and denoted detectioni(t) for
cell i and step t.
The update of the occupancy map with value li(t) for step
t is the following:

li(t) = detectioni(t) + li(t− 1)− l(mi) (13)

An example can be seen in Figure 4. The confidence map
can be seen to be zero for all regions where no detection
happens. The occupancy map evolves in a way that re-
curring obstacles get a higher score whereas the region
inside the field of view, drawn as a triangle with a 10m
height, gets a lower score if no detection has happened.
Finally, a cell is classified as an obstacle when its value
on the occupancy map exceeds a given threshold. This
creates the Obstacle Map being the final classification of
an obstacle. However, obstacles can be deleted from the
obstacle map if the corresponding occupancy map cell
value gets lower than the same threshold. This allows for
deleting false positives.
3. RESULTS
The model was tested on two different datasets and
was afterwards implemented on a rover at the Planetary
Robotics Laboratory (PRL) - European Space Agency
(ESA).
3.1. Tenerife Dataset
The Tenerife Dataset was acquired in June 2017 at Mount
Teide on Tenerife in the Canary Islands, Spain. Mount
Teide is a volcano that can be considered as a Mars-like
terrain. Therefore, the dataset aims to resemble a plan-
etary exploration mission on Mars and can be used to
test the proposed model in the correct type of situation.
The dataset was recorded with the Heavy Duty Planetary
Rover (HDPR) Boukas et al., 2016 [4]. The Digital Ele-
vation Model (DEM) is used to create a ground truth of
the obstacles positions and heights and the LocCam’s im-
ages (FLIR Bumblebee 2 stereo) as well as the pose will
be used as inputs to the system. Examples of the stereo
images were used in the previous figures (2, 3, 4) and the
resulting detections can be seen in Figure 5.
From Figure 5, one can observe that all ground truth ob-
stacles inside the propagated field of view have been de-
tected with an additional false positive corresponding to
a rock smaller than the height threshold. The f1.5score

(F-beta measure with β = 1.5) associated with the global
object-wise detection is 0.95.

3.2. Katwijk Beach Dataset

The Katwijk Beach Dataset, 2016 [7], is a field test that
was conducted on a beach in the area of Katwijk. This
dataset comprises of two traverses with different sparsity
of obstacles. The obstacles are of known sizes (card-
board made) and their positions are known. This dataset
offers different challenges than the Tenerife one. The
recorded images suffer more significant illumination ar-
tifacts and make up for a more difficult stereo matching
process. Moreover, even if the rocks are simpler in shape
and usually larger, they lack a strong contrast with the
background that could be observed on Mount Teide as
seen in Figure 6.
An additional detail to take into account is that the pose
of the rover has been approximated. Indeed the abso-
lute position is determined by two sets of Trimble GNSS
Antenna&Receiver pairs, but the orientation is not given
and was therefore approximated using consecutive posi-
tion points. The resulting detections can be seen in Figure
7.
Even though the images are quite challenging for the
model and it can be seen that the localization of the obsta-
cles is not as accurate as for the Tenerife case, only one
out of fourteen obstacles has been missed, and there are
two false positives which represent a f1.5score = 0.91
object-wise. However, several detections do not lie on
the ground-truth obstacle which is mainly caused by two
factors. The first being the approximated pose, the second
being the difficulty of performing accurate stereo match-
ing on corrupted images as seen in Figure 6.

3.3. Planetary Robotics Laboratory

Finally, after testing on two different datasets, the model
was ultimately implemented on a rover and tested on the
Mars Yard of PRL-ESA. The rover used is the Martian
Rover Testbed for Autonomy (MaRTA) and was designed
to mimic a half-scaled ExoMars rover. It drives at slow
speeds below 10 cm/s and is equipped with stereo cam-
eras. The entire motion planning system is implemented
using ROS2 navigation stack Nav2 [9]. The stereo cam-
era used is a FLIR Bumblebee 2 stereo for which a
ROS2 driver was developed. The onboard computer is
a PICO511LG-i7-7600U equipped with an Intel Core i7
processor. The pose of the rover is given using a Vicon
motion capture system. The rover and the testing situa-
tion can be seen in Figure 8.
Figure 9 shows the results of testing the rover on the Mars
Yard. A costmap is generated and updated as the model
detects new obstacles. In turn, the rover updates its path
to avoid the newly detected obstacles. Moreover, the ob-
stacles were placed to create narrow corridors to test the
precision of the detected location. Therefore, an added
∼20 cm of detected distance with regards to the ground
truth would imply a crash. Finally, the rover was able
to safely perform the traverse under the narrow corridors
conditions. It dynamically updated the costmap at a fre-
quency of 1Hz and allowed the rover to avoid all obsta-
cles places on the Mars Yard.

7

Figure 4. Example of Obstacle Classification. From top to bottom: the rover goes forward toward the rocks. From left to
right: Left image, Confidence Scores, Occupancy Grid, Obstacles The rover is drawn as a circle with an arrow indicating
its direction. The colormap is shown at the end with low score as blue and high score as red.

Figure 5. Tenerife final tuning results. Blue is propagated
field of view, red is ground truth obstacles and green is
detected obstacles.

4. CONCLUSION
This paper describes the development of a visual obstacle
detector for planetary exploration. The goal was to per-
form detections at a medium to close range to avoid ob-
stacles while still enabling smooth trajectories. Another
key requirement was for the model to perform real-time
taking into account the driving speed of planetary rovers.
The results obtained from the Tenerife dataset showed
that the detection range could go up to 20m. For images
affected by blurring and artifacts, however, the range was
lowered down to 8.5m but still proved to be much larger
than the 0.5m range from the initial benchmark model
[5]. On both datasets, considering the pose uncertainty,
the model resulted in f1.5 scores over 0.9 for detection of
obstacles over the entire traverses.
The integration of the model on the MaRTA rover proved
to perform accurate obstacle detection and localization
in real-world scenarios to navigate through narrow cor-
ridors on the PRL’s Mars Yard. It also showed the real-
time running of the algorithm at 1Hz, which is consid-
ered real-time taking into account the maximum velocity
of the rovers at the PRL going up to 10 cm/s. It suc-
ceeded as a final Proof of Concept on the feasibility and
performance of the proposed obstacle detector.

Figure 6. Example of left stereo images for the Katwijk
Beach dataset.

Figure 7. Katwijk Beach final tuning results. Blue is
propagated field of view, red is ground truth obstacles and
green is detected obstacles.

8

Figure 8. View of the test setup with the MaRTA rover at
the initial pose.

(a) Initial pose and plan. (b) Replan

(c) First Waypoint and second
plan.

(d) Second Waypoint and final
plan.

(e) Way to final Waypoint (f) Final pose

Figure 9. Nav2 Costmap as the rover autonomously nav-
igates through the Mars Yard.

Overall, the proposed model has shown to meet the given
requirements, with a detection range exceeding 10m and
running real-time on a test rover at 1Hz with a high accu-
racy. As such, it offers an extension to the PRL’s existing
short range hazard detector and can be used either on its
own or in conjunction with it.

ACKNOWLEDGMENTS

Thanks to the Automation & Robotics Section of the
ESA for their guidance and support in conducting this
research.

REFERENCES
[1] The Mars 2020 Rover’s “Brains”. https://

mars.nasa.gov/mars2020/spacecraft/
rover/brains/. [Online; accessed 01-April-
2022].

[2] J. Andersson, D. Hellstrom, S. Habinc, R. Weigand,
and L. Fossati. Current and Next Generation
LEON System-On-Chip Architectures for Space.
Workshops on Spacecraft Flight Software, 2012.

[3] M. Azkarate, L. Gerdes, L. Joudrier, and C. J.
Pérez-del-Pulgar. A GNC architecture for plane-
tary rovers with autonomous navigation. In 2020
IEEE International Conference on Robotics and
Automation (ICRA), pages 3003–3009, 2020.

[4] E. Boukas, R. Hewitt, M. Pagnamenta, R. Nelen,
and M. Azkarate. HDPR: A mobile testbed for cur-
rent and future rover technologies. 06 2016.

[5] L. Gerdes, M. Azkarate, J. R. Sánchez-Ibáñez,
L. Joudrier, and C. J. Perez-del Pulgar. Efficient
autonomous navigation for planetary rovers with
limited resources. Journal of Field Robotics, 37(7):
1153–1170, 2020. doi: 10.1002/rob.21981. URL
https://onlinelibrary.wiley.com/
doi/abs/10.1002/rob.21981.

[6] W. B. Gian Diego Tipaldi. Lecture notes in
robot mapping. http://ais.informatik.
uni-freiburg.de/teaching/ws17/
mapping/pdf/slam10-gridmaps.pdf,
2014.

[7] Hewitt and e. a. Boukas. The katwijk beach plane-
tary rover dataset. International Journal of Robotics
Research, Manuscript IJR-10-1177, 2016.

[8] D. Lowe. Object recognition from local
scale-invariant features. In Proceedings of
the Seventh IEEE International Conference on
Computer Vision, volume 2, pages 1150–1157
vol.2, 1999. doi: 10.1109/ICCV.1999.790410.

[9] S. Macenski, F. Martin, R. White, and
J. Ginés Clavero. The marathon 2: A naviga-
tion system. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS), 2020.

[10] E. Rosten and T. Drummond. Fusing points and
lines for high performance tracking. In Tenth
IEEE International Conference on Computer Vision
(ICCV’05) Volume 1, volume 2, pages 1508–1515
Vol. 2, 2005. doi: 10.1109/ICCV.2005.104.

[11] D. Townson, M. Woods, and S. Carnochan. Exo-
Mars VisLoc - The industrialised, visual localisa-
tion system for the ExoMars rover. 06 2018.

[12] Z. Zhao, P. Zheng, S. Xu, and X. Wu. Object
detection with deep learning: A review. CoRR,
abs/1807.05511, 2018. URL http://arxiv.
org/abs/1807.05511.

https://mars.nasa.gov/mars2020/spacecraft/rover/brains/
https://mars.nasa.gov/mars2020/spacecraft/rover/brains/
https://mars.nasa.gov/mars2020/spacecraft/rover/brains/
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21981
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21981
http://ais.informatik.uni-freiburg.de/teaching/ws17/mapping/pdf/slam10-gridmaps.pdf
http://ais.informatik.uni-freiburg.de/teaching/ws17/mapping/pdf/slam10-gridmaps.pdf
http://ais.informatik.uni-freiburg.de/teaching/ws17/mapping/pdf/slam10-gridmaps.pdf
http://arxiv.org/abs/1807.05511
http://arxiv.org/abs/1807.05511

	Introduction
	Model Overview
	Segmentation
	Stereo Matching and Height Extraction
	Obstacle Stereo Matching
	Feature Extraction and Matching
	Height Extraction

	Obstacle Classification

	Results
	Tenerife Dataset
	Katwijk Beach Dataset
	Planetary Robotics Laboratory

	Conclusion

