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ABSTRACT

This work demonstrates how Light Detection and Rang-
ing (Lidar) point clouds can be used to autonomously and
efficiently segment planetary terrain to identify obstacles
for safe rover navigation. Two Lidar datasets which rep-
resent planetary environments were used to train a neu-
ral network to perform semantic segmentation. The neu-
ral network was based on the RandLA-Net architecture
that was designed to efficiently perform semantic seg-
mentation on point clouds using a random sampling algo-
rithm without modifying the point cloud structure. Due
to the nature of the planetary scenes recorded in the point
clouds,the majority of the points represent the ground and
the minority of the points represent obstacles. Methods to
handle the class imbalance of the datasets were explored
to enable the model to learn the minority class and to op-
timize the model’s performance.

1. INTRODUCTION

The motivation of this work is to determine if point cloud
data from a Light Detection and Ranging (Lidar) sensor
can be used to efficiently segment terrain for safe rover
navigation. The goal is to use datasets that represent a
planetary environment to identify rock obstacles by per-
forming semantic segmentation of lidar point clouds us-
ing machine learning techniques. Due to communica-
tion delay, rover operators on Earth cannot operate rovers
on other planetary surfaces in real time. For example,
the communication delay between Earth and Mars ranges
from five to twenty minutes depending on the distance be-
tween the planets based on their positions in orbit [2]. Be-
cause of the communication delay, the current method of
navigating planetary rovers is to use a blind drive method,
where goal positions are set by the operators on Earth,
and the rover navigates itself. However, this method is
not sustainable for future missions with more complex
requirements such as increased driving speeds and dis-
tances, navigating in permanently shadowed regions, or
for groups of rovers working together. Overall, rovers
must be capable of detecting natural obstacles including
rocks, craters, cliffs, trenches, and sand dunes and navi-
gating through the obstacles on their own.

While fully autonomous navigation approaches exist,
they typically display a high computational complexity
which requires planetary rovers to periodically stop for
processing. The more complex the environmental analy-
sis (for example for localization, mapping, and obstacle
detection), the longer and more frequent these stops need
to be, reducing navigational efficiency. The type of sen-
sors that provide the underlying data and influences the
required computational complexity.

A current method for obstacle detection on planetary
surfaces is to use depth cameras to provide information
about near by hazards such as large rocks, trenches, or
sand dunes, and information about far away obstacles to
detect a safe path for blind drives [1]. Problems can arise
when using camera images due to the varying lighting
conditions: large shadows can be cast by obstacles mak-
ing it difficult to apply image processing techniques, lens
flares can occur when there is a bright light source, and
driving at night or in permanently shadowed regions is
not possible without an additional light source. Lidar, on
the other hand, is unaffected by lighting conditions since
the sensor works by sending out pulsed lasers to measure
the distance of surrounding surfaces.

Previously, using point cloud data required pre-
processing techniques that use a large amount of mem-
ory and processing power. When working with planetary
rovers, both the memory and processing power are lim-
ited, making it unrealistic to use Lidar on a rover. How-
ever, with recent advancements in machine learning tech-
niques, point clouds can be fed into a Neural Network
(NN) without any pre-processing steps beforehand, re-
ducing the required computational power [5]. These ad-
vancements make it feasible to use Lidar with the limited
computational resources on board a rover. The ability to
autonomously detect rock obstacles using Lidar would al-
low for safe rover navigation, remove obstacle detection
challenges created by lighting conditions, and produce a
detailed map of the rover’s surroundings.

The sections hereafter describe the datasets, explain the
method used for rock detection, and present the segmen-
tation results.
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2. DATASETS

This section contains information about two datasets con-
taining Lidar point clouds that were recorded at planetary
analogue sites. The processes of data collection and de-
termining ground truth labels for each data set are out-
lined. It is important for the data to be labelled as either
rock or ground in order to use it to train machine learning
models to detect rock obstacles in planetary scenes.

2.1. Analogue Terrain Facility Dataset

2.1.1. Data Collection

Lidar point cloud data was collected at the Canadian
Space Agency’s Analogue Terrain Facility (ATF) in
Saint-Hubert, Quebec. The ATF is approximately 80 ×
100 meters with several different types of terrain, geom-
etry, and rocks. Point cloud scans were collected using
an Ouster Lidar OS1-64 which has a 120m range and
a point cloud scan rate of 20Hz with 65536 points per
scan. The lidar was attached to a Clearpath Husky Un-
manned Ground Vehicle (UGV) and data was collected
continuously while driving on a path through a sparse
boulder field with small and medium sized boulders, and
flat sandy terrain. Overall, 3318 point cloud scans were
collected during the traverse through the ATF.

2.1.2. Data Processing

Obtaining ground truth versions of the point clouds,
which identify the location of the rocks is an important
step to be able to use the data. One key feature of points
that represent rocks are their intensity, reflectivity, and
normal vector. The intensity and reflectivity of the rocks
are greater than that of the surrounding terrain. Another
key feature of points that represent rocks is that normal
vector to the points which make up the rocks vary from
the normal vectors of the terrain. A sharp change in the
normal direction can be seen at the base of each rock.
By combining the change in the normal direction with
the change in the reflectivity and intensity values, the
rocks can be separated from the terrain in the point clouds
which allows for ground truth labels to be estimated and
applied to the ATF dataset. Fig. 1 shows a birds-eye view
of the ground truth of the point cloud with the rocks are
shown in red.

2.2. Katwijk Beach Planetary Rover Dataset

2.2.1. Data Collection

The Katwijk Beach Planetary Rover Dataset was col-
lected at a beach near Katwijk in The Netherlands [3].
Three traverses were conducted during the data collec-
tion. The first two traverses were approximately 1000m
through a boulder field made up of two hundred and
twelve artificial rocks that were placed to model typi-
cal boulder fields seen in Mars Reconnaissance Orbiter
images. The third traverse was approximately 200m
through a boulder field made up of the same two hun-
dred and twelve artificial rocks as in the first traverses, but
with the rocks placed to be twice as dense. In all three tra-
verses, three different sized artificial boulders were used.

Figure 1: Birds-eye view of a point cloud from the ATF
dataset showing rock points in red

The large boulder was 1.897m in diameter, the medium
boulder was 1.326m in diameter, and the small boulder
was 0.737m in diameter. Overall, there were 12 large
boulders, 100 medium boulders, and 100 small boulders
used.

During the data collection process, the rover was
equipped with a Velodyne VLP-16 Lidar sensor which
has a 100 meter range and a point cloud scan rate of 20
Hz with 28928 points per scan. During the first traverse,
15500 point clouds were collected, in the second traverse
10700 point clouds were collected and in the third tra-
verse 9200 point clouds were collected. Additionally,
Differential Global Positioning System (DGPS) data was
collected every three seconds for the rover position while
driving, and for each rock location.

2.2.2. Data Processing

In order to determine ground truth models, the Lidar
scans were aligned with the known location and esti-
mated heading direction of the rover and overlaid on a
georeferenced tiff image. Then, since the location and
size of each rock was known, the points overlapping the
rock locations could be labeled as rock. To achieve this
ground truth model, the following steps had to be taken.
First, the position of the rover when each Lidar scan was
taken had to be interpolated from the known rover loca-
tions and the time stamps on the data. The rover moved
approximately 1.5m between each recorded rover loca-
tion, so a linear interpolation of the Lidar scan locations
between each rover location was found to be acceptable.

The next step in aligning the point clouds with the rover
location and heading direction was to apply a series of
transformations to transform the data from the local Li-
dar frame to the location and orientation of the Lidar
mounded on the rover in Universal Transverse Mercator
(UTM) coordinates taken from the recorded DGPS data.
These transformations resulted in the origin of the Lidar
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Figure 2: Birds-eye view of a point cloud from the
Katwijk Beach Planetary Rover Dataset showing rock
points in blue.

data being aligned with the DGPS location of the Lidar
sensor as data was collected. Since the location and ra-
dius of each rock was also recorded, each point was la-
beled as rock or ground based on whether or not it over-
lapped a rock location as shown in Fig. 2.

3. METHODOLOGY

This section outlines the methodology used to perform
semantic segmentation of the point clouds contained in
the available datasets and the methodology to test the
real-time implementation of the developed models.

3.1. Training, Validation, and Testing Split

The data was divided into three parts: the training set,
validation set, and testing set. The training set is made up
of 60% of the data and the validation and testing sets are
each made up of 20% of the data. The data from each
traverse is sequential, therefore, the data should be split
in sequential order to reduce the number of overlapping
scans in the training, validation, and testing sets. Each
traverse was split so the first 60% of a traverse was as-
signed to training, the next 20% was assigned to valida-
tion, and the final 20% was assigned to testing.

3.2. Handling Class Imbalance

Naturally, each point cloud scan in the datasets contain
a large number of ground points and a small number of
rock points which creates a class imbalance. To deal
with the class imbalance, random under sampling of the
ground class and cost-sensitive methods were explored in
the experiments.

Random under sampling of the ground class is applied by
determining the index of all points corresponding to the
ground class, and randomly selecting a number of points
to delete, N , determined by subtracting the number of
points desired after random under sampling from the to-
tal number of points in the point cloud scan as shown in

Table 1: Percentages of random under sampling of the
ground class explored and the number of points remain-
ing in each point cloud after random under sampling

Percentage of
Random Under
Sampling

20% 40% 60%

Number of Points
Remaining in the
Point Cloud After
Sampling

23142 17557 11571

Eq. 1.

N = len(pointstotal)− len(RUS) (1)

Then, N points from the ground class are randomly sam-
pled and deleted. The percentages of randomly sampled
points and the corresponding number of points remaining
in the point clouds after random under sampling that are
explored in this work are summarized in Tab. 1.

Two cost sensitive methods were explored: a cost matrix,
and inverse cost frequency. For this work, false negative
classifications are much more serious than false positive
classifications. A false negative could lead to the rover
hitting a rock and getting damaged, whereas a false posi-
tive will result in the rover avoiding areas that did not nec-
essarily need to be avoided. The cost matrices explored
in the experiments are displayed in Tab. 2. In both matri-
ces the cost of a false negative is set higher than the other
costs and there is no cost for a correct classification. Cost
matrix A assigns a cost of ten for a false negative classifi-
cation and a cost of one for a false positive classification.
Cost matrix B assigns a cost of fifty for a false negative
classification and a cost of one for a false positive clas-
sification. The inverse cost frequency method takes into
account the ratio of the total points in each class relative
to the total number of points in the dataset, as shown in
Eq. 2.

weight =
numclass

numtotal
(2)

Then the cost of predicting a false negative and false posi-
tive are calculated as the inverse of the weight plus a scal-
ing factor, as shown in Eq. 3. The scaling factor is used to
limit maximum cost of misclassifying the minority class.
The resulting costs calculated from the total class imbal-
ance in the Katwijk Beach Planetary Rover Dataset are
29 for a false negative and 1 for a false positive.

cost =
1

weight+ 0.02
(3)

The cost of predicting a false negative is calculated using
the weight of the positive class, in this case the rock class.
The cost of predicting a false positive is calculated using
the weight of the negative class, in this case the ground
class.

3.2.1. Iterating the Cost Sensitive Methods

After analyzing the results of the initial grid search pre-
sented in Section 4.1, the models had a significantly
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Table 2: Initial cost matrices explored in experiments

(a) Cost Matrix A

Cost Matrix A Actual Class

Predicted Class 0 1
10 0

(b) Cost Matrix B

Cost Matrix B Actual Class

Predicted Class 0 1
50 0

Table 3: Cost matrices explored in iteration one

(a) Cost Matrix A

Cost Matrix A Actual Class

Predicted Class 0 5
30 0

(b) Cost Matrix B

Cost Matrix B Actual Class

Predicted Class 0 5
50 0

(c) Cost Matrix C

Cost Matrix C Actual Class

Predicted Class 0 10
30 0

(d) Cost Matrix D

Cost Matrix D Actual Class

Predicted Class 0 10
50 0

higher number of false positives than false negatives. The
cost sensitive methods were tuned by increasing the cost
of a false positive to see if the false positive rate could be
decreased while keeping the false negative rate low. The
second set of cost matrices considered are given in Tab. 3.

3.3. Semantic Segmentation of the Katwijk Beach
Planetary Rover Dataset

The ability to achieve a low computational complexity
and accurate segmentation results is important to allow
for model deployment on-board a rover. The network
RandLA-Net was selected as a starting point for train-
ing a model to detect rock obstacles from point clouds
in planetary scenes because the network was able to
achieve results of 53.9% Mean Intersection Over Union
(mIOU) when performing semantic segmentation of the
SemanticKITTI dataset, while keeping the computational
complexity low: achieving an approximate frame rate
of 22 frames per second on an NVIDIA RTX2080Ti
GPU [4]. The original RandLA-Net model uses the pre-
processing techniques of grid sub-sampling and random
cropping to reduce the size of the point clouds used to
train the model. The random cropping algorithm selects

Table 4: Hyperparameters explored while tuning the
model (* with early stopping)

Hyperparameter Value
Number of Layers 2, 3, 4
Batch Size (Training) 6, 12
Learning Rate 1e-2, 1e-4
Number of Epochs 200*

a point at random and keeps the K-nearest neighbours
to that point. The point clouds used for this work con-
tain approximately one third the number of points that
were used to train the original RandLA-Net model and
only two classes; therefore, it is not necessary to reduce
the number of points in each point cloud. Further, the
grid sub-sampling method and random cropping method
could both lead to rock points being removed from the
point clouds which should be avoided because there is al-
ready a large class imbalance in the datasets. For these
reasons, the pre-processing steps of grid sub-sampling
and random cropping are not applied in this work.

A grid search of hyperparameters and methods for han-
dling the class imbalance of the datasets was performed
to find the best model for performing semantic segmenta-
tion of the planetary datasets. All of the parameter com-
binations were trained five times and the results were av-
eraged to get a better idea of each model’s performance
because the random sampling method adds variation to
each training set. Early stopping was used while training
the models: if the model had not improved with respect
to the mIOU within the last 25 epochs, then the training
process was stopped. The tuned hyperparameters, sum-
marized in Tab. 4 include the number of layers, the batch
size, the learning rate and the number of epochs.

3.4. Semantic Segmentation on the Analogue Ter-
rain Facility Dataset

Significant differences exist between the two datasets:
each Lidar has different parameters resulting in differ-
ent density representations of the scenes; the ATF dataset
has 3% the number of point clouds and covers 2% of
the distance compared to the Katwijk Beach Planetary
Rover Dataset, resulting in the ATF dataset being under-
represented; and the artificial obstacles in the Katwijk
Beach Planetary Rover Dataset have consistent shape,
size, and texture compared to the real rocks in the ATF
that vary in shape, size, and texture. For all of these rea-
sons, the datasets were not mixed together for training.
Instead, after training on the Katwijk Beach Planetary
Rover Dataset, the top three performing combinations of
model parameters, presented in Tab. 5, were applied to
the ATF dataset to test the model’s ability to learn rep-
resentations of real rocks with varying size, shape, and
texture which will examine how well the model performs
on a more complex dataset.

3.5. Real-time Inference of Point Clouds

The ability of the model to segment point clouds in real
time with limited computational power is important so
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Table 5: Parameters of the models to be trained and tested
on the ATF dataset

Model
Number

Number
of Layers

Batch
Size

Learning
Rate

Cost
Method

1 4 6 1e-2 [0, 5;
30, 0]

2 4 6 1e-2 [0, 10;
30, 0]

3 4 12 1e-2 [0, 10;
50, 0]

the model is able to be deployed on-board a planetary
rover. To test the ability to deploy the model on board a
rover, the top three performing models from Experiment
One were tested to be used in a real-time simulation using
an Intel Xeon E5-2665 CPU. The time to perform scene
segmentation on the 480 point clouds in the test set of the
Katwijk Beach Planetary Rover Dataset was recorded and
averaged. The results were compared with the segmenta-
tion frame rate required for implementing the model on
board a rover, and the frame rate which the Lidar used to
create the dataset publishes point clouds.

4. RESULTS AND DISCUSSION

This section presents the results of the experiments out-
lined in section 3 and discusses the implications of the
results.

4.1. Semantic Segmentation on the Katwijk Beach
Planetary Rover Dataset

The first step consisted of tuning the number of layers
while holding the other hyperparameters constant. The
model was trained with four, three, and two layers and
the average validation performance metrics are given in
Tab. 6. Since there is a large class imbalance, the model
naturally achieves very high accuracy by correctly pre-
dicting the ground class, so the recall and precision scores
are used to measure the model’s ability to predict the mi-
nority class. The recall score gives the ratio of correctly
predicted rock class labels to the true total number of rock
class labels. The recall scores were similar between each
model, with a decrease of only 0.62% as the number of
layers decreased from four to two. The precision score
gives the ratio of correctly predicted rock class labels to
the total number of predicted rock class labels. The pre-
cision scores decrease by 8.24% as the number of layers
were reduced from four to two layers, and indicates that
number of layers has a greater impact on the number of
false positive predictions. Since the model performance
was found to decrease as the number of layers decreased,
the remainder of the experiments are performed on mod-
els with four layers only.

A grid search was performed on the remaining hyperpa-
rameters and class imbalance techniques outlined in sec-
tion 3.3. While performing the grid search with 20% ran-
dom under sampling applied, the model was either not
able to learn, or it would overfit to the training set. Ran-
dom under sampling likely did not perform well because

Table 6: Comparison of average performance metrics of
models trained with two, three, and four layers

Number of Layers 4 3 2
Recall (%) 92.11 91.86 91.49
Precision (%) 73.13 69.61 64.89
F1 (%) 81.26 80.20 75.43

it changes the density of the ground plane of the point
clouds resulting in the network learning an incorrect rep-
resentation. The network works by taking a random sam-
ple of points and using the Local Spatial Encoding unit
to create a feature vector for each point that encodes in-
formation about the surrounding points. Random under
sampling of the ground class would result in the network
learning a less dense representation of the ground during
training, resulting in the model being unable to properly
classify the original point cloud. Because of these results,
no further exploration into random under sampling was
done.

The grid search was continued on the rest of the hyper-
parameters and cost sensitive methods for handling class
imbalance. The average performance metrics for each
combination of parameters are given in Tab. 7. The fol-
lowing conclusions about the effect of the hyperparame-
ters and class balancing methods were drawn from the re-
sults: decreasing the learning rate resulted in a decrease
in the performance of the model; increasing the cost of
a false negative resulted in the number of false negatives
decreasing, but the number of false positives tended to
increase; increasing the batch size when the learning rate
was 1e-2 resulted in the number of false negatives and
false positives decreasing.

After analyzing the results of the grid search, a question
arose as to whether the false positive rate could be de-
creased by increasing the cost of false positives in the
cost matrices. The results of the second grid search,
performed with the modified cost matrices, are given in
Tab. 8 and show that increasing the cost of a false posi-
tive resulted in fewer false positive classifications as seen
through the increase in the precision scores. When the
cost of a false positive was adjusted to 5 is had little ef-
fect on the recall scores. However, when the cost of a
false positive was increased to 10, the recall scores de-
creased, indicating that increasing the cost too much had
a negative impact on the number of false negatives.

4.1.1. Performance on the Test Set

The top three performing models based on the F1-scores
from training and validation, whose parameters are sum-
marized in Tab. 9, were run on the test set of data to de-
termine the unbiased performance of each model. The
results of the test are given in Tab. 10, and are broken
down by test area, where test area one and two are from
traverse one, test area three is from traverse two and test
area four is from traverse three of the dataset. Addition-
ally, the average performance results over all four test sets
of data are provided for each tested model. An important
result is that the models all achieved high recall scores,
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Table 7: Performance results of models tested during a
grid search of the hyperparameters and methods for han-
dling class imbalance

Model Description Performance

Learning
Rate

Cost
Method

Batch
Size

Recall
(%)

Prec-
ision
(%)

F1
(%)

1e-2 Inverse 6 92.11 73.13 81.26
1e-2 Inverse 12 96.52 74.54 84.12

1e-2 [0, 1;
10, 0] 6 89.66 50.17 64.34

1e-2 [0, 1;
10, 0] 12 93.19 66.60 77.69

1e-2 [0, 1;
50, 0] 6 90.47 53.21 67.01

1e-2 [0, 1;
50, 0] 12 94.89 55.96 70.40

1e-4 Inverse 6 93.49 40.04 56.07
1e-4 Inverse 12 90.80 26.64 41.19

1e-4 [0, 1;
10, 0] 6 92.13 57.21 70.59

1e-4 [0, 1;
10, 0] 12 84.33 54.31 66.07

1e-4 [0, 1;
50, 0] 6 92.22 33.21 48.83

1e-4 [0, 1;
50, 0] 12 88.64 24.43 38.30

Table 8: Performance results of models tested with the
iterated set of cost methods for handling class imbalance

Model Description Performance

Learning
Rate

Cost
Method

Batch
Size

Recall
(%)

Prec-
ision
(%)

F1
(%)

1e-2 [0, 5;
30, 0] 6 92.55 84.04 88.09

1e-2 [0, 5;
30, 0] 12 87.22 88.82 88.01

1e-2 [0, 10;
30, 0] 6 91.68 87.45 89.51

1e-2 [0, 10;
30, 0] 12 83.20 91.11 86.98

1e-2 [0, 5;
50, 0] 6 92.45 79.86 85.69

1e-2 [0, 5;
50, 0] 12 90.57 76.01 82.65

1e-2 [0, 10;
50, 0] 6 84.19 89.59 86.80

1e-2 [0, 10;
50, 0] 12 88.24 88.27 88.26

Table 9: Parameters of the top three performing models
during training and validation on the Katwijk Beach Plan-
etary Rover Dataset

Model
Number

Number
of Layers

Batch
Size

Learning
Rate

Cost
Method

1 4 6 1e-2 [0, 5;
30, 0]

2 4 6 1e-2 [0, 10;
30, 0]

3 4 12 1e-2 [0, 10;
50, 0]

Table 10: Performance of the top three models on the test
set of the Katwijk Beach Planetary Rover Dataset

Model
Number Test area Recall

(%)

Prec-
ision
(%)

F1
(%)

1

1 89.67 96.71 93.06
2 98.13 77.27 86.46
3 100.00 74.27 85.24
4 93.75 57.69 71.43
Average 95.39 76.49 84.05

2

1 88.50 89.76 89.13
2 95.59 89.08 92.22
3 100.00 92.70 96.21
4 93.75 68.18 78.95
Average 94.46 84.93 89.13

3

1 94.13 87.75 90.83
2 98.30 78.24 87.13
3 100.00 64.80 78.64
4 93.75 50.85 65.93
Average 96.54 70.41 80.63

with scores ranging from 88.50 to 100.00%, but the pre-
cision scores were lower and had a larger range of 50.85
to 96.71%. A high recall score indicates a low false neg-
ative rate which is very important because it indicates that
rocks are not being missed in the point cloud scenes. The
low precision scores indicate that a high number of false
positives are occurring; however, false positives are not
a always a bad thing depending on where they occur. If
a false positive occurs next to a true rock location, the
false positive can be considered padding around the rock;
this will be discussed further in Section 4.4. Overall, the
model with the best performance based on the F1-score is
model number two which achieved an average F1-score
of 89.13%. The performance of the model can be seen in
Fig. 3 which shows a comparison of ground truth scans
to the models predictions from a bird’s-eye view of point
clouds from the test sets.

4.2. Semantic Segmentation on the Analogue Ter-
rain Facility Dataset

The validation results obtained after training the top three
models on the ATF dataset, given in Tab. 11, show that
the models achieved good precision and recall scores,
indicating that the models are capable of learning more
complex representations of obstacles in planetary scenes.
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(a) Ground truth of point cloud from test area one

(b) Prediction of point cloud from test area one

Figure 3: Comparison of ground truth and predicted la-
bels for four point clouds from the test set of the Katwijk
Beach Planetary Rover Dataset where misclassifications
are circled in red

The ATF dataset contains real rocks, so their size, shape,
and texture are different than the artificial rocks placed in
the Katwijk Beach Planetary Rover Dataset. The artifi-
cial rocks repeat in size and shape throughout the dataset,
whereas in the ATF dataset each rock is unique. The per-
formance of the models on the training set are given in
Tab. 12 and show that all three models achieved high
recall and precision scores, but model number two per-
formed the best with an F1-score of 91.40%.

4.3. Real-Time Implementation Analysis

The average time required for the models to perform se-
mantic segmentation of a point cloud scene is presented
in Tab. 13. The results show that average time per point
cloud required for each model to perform semantic seg-
mentation on the test set is very similar: 0.0068 s separate
the fastest model from the slowest model. The small time
difference between models is likely because the only vari-
ation between the tested models is the cost matrix applied
to handle the class imbalance. Changing the cost matrix

Table 11: Validation performance of the models on the
ATF dataset

Model Description Performance

Learning
Rate

Cost
Method

Batch
Size

Recall
(%)

Prec-
ision
(%)

F1
(%)

1e-2 [0, 5;
30, 0] 6 93.26 87.46 90.27

1e-2 [0, 10;
30, 0] 6 92.43 90.69 91.55

1e-2 [0, 10;
50, 0] 12 91.11 90.78 90.94

Table 12: Performance of the models on the test set of the
ATF dataset

Model Description Performance

Learning
Rate

Cost
Method

Batch
Size

Recall
(%)

Prec-
ision
(%)

F1
(%)

1e-2 [0, 5;
30, 0] 6 98.27 81.75 89.25

1e-2 [0, 10;
30, 0] 6 96.28 86.99 91.40

1e-2 [0, 10;
50, 0] 12 98.17 81.38 88.99

should not affect the models speed, but only the model’s
ability to predict a correct classifications. If the trained
model was applied to the rover, with similar compute ca-
pabilities as the tested CPU, it would provide the ability
to perform scene segmentation at a rate of approximately
0.63 s per point cloud. Further, the rate Velodyne VLP-16
Lidar publishes point clouds at a rate of 10 point clouds
per second, so the model would be capable of segment-
ing approximately every sixth point cloud recorded by the
Lidar in real-time.

4.4. Impact of False Negative and False Positive
Classifications

The seriousness of false negative and false positive classi-
fications depends on two factors: the location of the point
and the classification of the neighboring points. If a false
negative occurs but some or all other points belonging to
that rock are correctly identified then the false negative is
not very serious because the identified rock area will be
padded and avoided. When a false negative occurs and
no other points in that rock are correctly identified then
the false negative is a very serious misclassification be-

Table 13: Average time per point cloud required to per-
form semantic segmentation on the Katwijk Beach Plan-
etary Rover Dataset test set

Model Number Time (Seconds/Point Cloud)
1 0.6306
2 0.6238
3 0.6275
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cause a rock has been missed and may damage the rover
if it runs into the missed rock. Additionally, false nega-
tives are more likely to occur farther away from the rover
because the scan density of Lidar point clouds decrease
with distance; therefore, far away rocks have a lower den-
sity representation than close rocks and are easier to mis-
classify. However, false negatives which occur far away
from the rover are not as serious because the rover is not
close enough to be damaged by the missed rock and as
the rover moves closer to the rock, the rock density in the
point cloud will increase and the rock will be more likely
to be detected. If a false positive occurs and its neigh-
boring points belong to a rock then the misclassification
is not very serious because the rock will be padded and
avoided anyways. If a false positive occurs and its neigh-
boring points do not belong to a rock, it will result in the
rover unnecessarily avoiding the area and can be serious
if the rover drives on a longer path than necessary, or if
too many false positives occur that are not near true rocks,
making the terrain seem untraversable.

5. CONCLUSION

This work presents a way to use NNs to efficiently seg-
ment obstacles from Lidar point clouds and proves the vi-
ability of performing the segmentation on-board a rover.
The scope of this work was to use pre-processed point
cloud data with per-point labels to train NN machine
learning models to perform semantic segmentation of
point cloud scenes that represent planetary environments,
and to detect obstacles within the point clouds. Modifica-
tions to a NN called RandLA-Net, including modifying
the data processing, tuning the hyperparameters, and ap-
plying methods to handle the class imbalance, resulted
in the best overall segmentation accuracy of 99.68%,
where each point was identified as either the rock class
or the ground class. The model achieved a recall score of
94.46% and a precision score of 84.93%. A segmenta-
tion rate of 0.6238 seconds per point cloud was achieved
by the model on an Intel Xeon E5-2665 CPU, indicat-
ing that the model could be deployed on-board a rover
with similar processing capabilities. Overall, the result-
ing technique developed could be confidently used to in-
form a rover’s path planner of the location of surrounding
obstacles in environments with sandy terrain with rock
obstacles.
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