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Switzerland

6Institute of Anatomy, Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland
7Institute of Medical Engineering, Space Biology Group, Lucerne University of Applied Sciences and Arts, 6052,

Hergiswil, Switzerland

ABSTRACT

Resource prospection is a crucial step toward off-world
in-situ resource utilization, sustainable exploration, and
long-term habitation. The European Space Agency and
the European Space Resources Innovation Centre initi-
ated the Space Resources Challenge to assess current
European and Canadian off-world resource prospection
technologies and accelerate the development of key tech-
nologies. We present GLIMPSE, the Geological Lunar
In-Situ Mapper and Prospector for Surface Exploration,
which is our contribution to this challenge. GLIMPSE
builds upon the legged robot ANYmal. We successfully
use state-of-the-art locomotion, navigation and mapping
systems, and scientific payloads to prospect samples dur-
ing the first field trial of the Space Resources Challenge.
We conclude this work with lessons learned and a list
of identified requirements for future robotic prospection
technologies.

Key words: Field Test, Resource Prospection, Legged
Robots, Planetary Robotics.

1. INTRODUCTION

As exploration evolves toward longer and sustainable
journeys far away from earth, in-situ resource utilization
(ISRU) is becoming increasingly important. However,
before resources can be extracted and processed, they
need to be identified, characterized, and contextualized.
Thorough prospection of resources and their environment
is vital in identifying the most promising sites for ex-
traction and - more importantly - permanent and sustain-
able habitation. Therefore, many private and public enti-
ties in the space industry prioritize prospecting activities
in their technology development and mission portfolios.
The European Space Agency (ESA) states that establish-

Figure 1: We equipped ANYmal with state-of-the-art
sensors for navigation, mapping and localization, and a
broad scientific instrument suite for resource prospection.

ing volatiles at the lunar poles and regolith and pyroclas-
tic deposits across the lunar surface is a core priority in
the ESA Space Resources Strategy [1]. NASA mentions
robotic prospecting as essential for human habitation [2]
and plans the launch of the Volatiles Investigating Polar
Exploration Rover (VIPER) in 2023. The rover’s mission
is to investigate volatiles at the lunar south pole [3]. It is
important to note that some of the most relevant resources
on the Moon, including water-ice and sunlight, are most
abundant in environmentally challenging regions, such as
the south pole [4]. Challenges involve i.a., rough, steep,
and granular terrain, disadvantageous illumination condi-
tions, and high-latency Direct-To-Earth communication.
Before robotic prospection missions can commence in
such areas, technological advancements in robotic mobil-
ity, mapping, autonomy, payload development, and sci-
ence operation capabilities are required.
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In this context, ESA and the European Space Resources
Innovation Centre (ESRIC) started the Space Resources
Challenge (SRC) to evaluate and advance lunar robotic
prospecting technologies. The challenge contains two
phases, each concluded by an evaluated field deployment.
The first deployment took place in November 2021 in
a lunar analog environment in the Netherlands, simulat-
ing the adverse conditions at the lunar south pole: a pri-
ori unknown terrain, including unconsolidated, granular
soil and steep slopes, high solar incidence angle illumina-
tion, and network communications with high latency (5 s
round trip time) and intermittent complete loss of signal.
The goal during this trial was to navigate through a traver-
sal zone to a distinct Region of Interest (ROI), identify
rock samples scattered across the ROI, and analyze and
characterize their lithological and mineralogical compo-
sition. The expected outputs of the trial were maps of the
traverse zone and the ROI and a report on the lithology
and mineralogy of the rock samples as well as regolith
patches in the ROI. The overall size of the mission area
was 2500m2 and a total time of 2.5 h was available to
solve the challenge. Four operators were allowed in the
mission control room. The operators did not have any
visibility of the terrain or the robot during the mission.
They had to rely on available telemetry and image data to
command the robot and take samples.

In this paper, we present team GLIMPSE’s approach dur-
ing the first field trial of the SRC (Fig. 1). As our mo-
bility system, we chose to use a quadrupedal walking
robot over a traditional, wheeled or tracked robot. Legged
robots such as ANYmal [5] and Spot [6] have advanced
rapidly over the last decade and have shown impressive
performance in terrestrial environments [7], promising
new mobility capabilities in unstructured lunar environ-
ments. While general scalability aspects are still a topic
of ongoing research [8, 9], several legged prototypes have
already been successfully tested on lunar or martian ana-
log terrain [10, 11, 12].

Our solution allowed us to qualify for the SRC’s second
field trial. This work focuses on our learnings and po-
tential future improvements of the shown system. We are
convinced that challenge-driven innovation benefits from
participants openly sharing their experiences and lessons
learned.

This paper is organized as follows: In Sec. 2, we
provide a system overview, including our mobility ap-
proach (Sec. 2.1), our localization and mapping frame-
work (Sec. 2.2) and our payload suite (Sec. 2.3). We
summarize our field trial outcomes in Sec. 3.1 and give
insight into our lessons learned in Sec. 3.2.

2. SYSTEM DESCRIPTION

We use an adapted version of the legged robot ANYmal C
by ANYbotics as a mobility platform [13] [5], which we
will refer to as ANYmal GLIMPSE in the remainder of
this paper. With a mass of 50 kg, a payload capacity of
10 kg, an operation time of 80min while continuously

walking, ANYmal C is well-suited for the SRC. Using
state-of-the-art locomotion control, navigation, and map-
ping modules, ANYmal C has been successfully used in
unknown and rough environments, for example, in the
DARPA Subterranean Challenge [14].

ANYmal GLIMPSE is equipped with numerous sen-
sors to localize, navigate, and prospect the environment
(Fig. 1). Sensors for localization and navigation in-
clude a VLP16 Puck LITE LiDAR unit by Velodyne,
an Alphasense Core visual-inertial sensor by Sevensense
Robotics, and two Robosense RS-BPearl dome-LiDARs.
The VLP16 provides LiDAR scans for LiDAR odome-
try and mapping. The Alphasense Core, with its three
monochrome and four color cameras, as well as four
LEDs, provides the operator with a wide field of view to
set navigation goals and identify scientific targets. The
RS-BPearls are mounted at the front and back of the
robot and yield the input point clouds for local elevation
mapping. Two Intel Core i7 8850H and a Jetson AGX
Xavier graphics processing unit (GPU) provide powerful
on-board computing. Rajant’s commercial off-the-shelf
(COTS) BreadCrumb DX2 radio ensures network con-
nectivity.

Additionally, ANYmal GLIMPSE is equipped with sev-
eral scientific payloads, namely a pan-tilt unit with a
zoom-camera for close-up and contextual pictures (CTX),
which is part of the COTS ANYbotics inspection pay-
load, a custom microscope payload (MICRO), and a
Metrohm Mira XTR Raman spectrometer (RAMAN). Th
scientific payloads are further described in Sec. 2.3.

2.1. Robotic Mobility

Fig 2 shows the main modules in our navigation and loco-
motion pipeline. The operator can query the map repre-
sentations built on board via the user interface on mission
control, namely the global LiDAR map as a point cloud,
the local elevation map, and single LiDAR scans. The
operator then provides waypoints sent to the robot via the
high-latency network. These waypoints serve as an in-
put to the local planning module [15], which returns a
traversable trajectory from the current pose to the target
pose using a local elevation map [16]. The path follower
module tracks the path and outputs twist commands to
the locomotion controller [7].

2.1.1. Locomotion Control

We use a perceptive reinforcement learning-based loco-
motion controller [7] to achieve robust locomotion in un-
known environments. The controller has access to pro-
prioceptive data via the default ANYmal state estimation
module based on joint and IMU measurements. Addi-
tionally, an elevation mapping module generates a local
elevation map based on BPearl LiDAR data to provide
the controller with exteroceptive information [16]. The
controller was trained to balance the proprioceptive and
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Figure 2: Flowchart of the core modules for robot navi-
gation and locomotion.

exteroceptive information. When the exteroceptive in-
formation is reliable, the controller can use it to adapt
step height and length proactively and traverse obstacles
quickly and smoothly. When the exteroceptive data be-
comes unreliable due to occlusion, dusty environments,
or high-reflectance surfaces, the controller discards it and
relies on proprioceptive information. This locomotion
controller works reliably on hard-to-traverse terrains such
as snow, mud, and rocks. Even in rugged terrain, this con-
troller allows the robot to walk with up to 1.2m/s. The
robustness to noisy and incomplete terrain data makes
it highly suitable for unseen and unpredictable environ-
ments with adverse lighting conditions in lunar analog
missions.

2.1.2. Navigation

As shown in Fig. 2, the user provides local target poses
for the robot. We specifically do not use a global planning
module because a priori knowledge of the target area is
too limited to plan a global traverse to the ROI. On the
other hand, the high-latency network does not allow safe
and efficient direct teleoperation. We, therefore, deploy
the robot in a semi-autonomous fashion: The waypoint
provided by the user is fed into a sampling-based local
planning module [15] which relies on a local elevation
map. Unlike many state-of-the-art navigation planners,
this planner does not assign fixed traversability values to
discrete terrain patches. Instead, it enforces reachability
volumes of the feet to be in contact with the environment
while preventing environment collisions of the base for
state validity checking. This approach allows to fully uti-
lize the discrete footholds of legged robots, for example,
to step over rocks or gaps. The method uses a learned
foothold score representation to rate foothold safety and
discards surfaces with a low score from the potential foot
reachability map. The planning algorithm itself uses a
variant of lazyPRM*. The original paper’s authors re-
port a maximum planning time of 3.1 s in their test setup
with ANYmal, which allows for real-time use given the
robot’s speed and the input map size. [15]

The local planner outputs a path from the current robot
pose to the target pose. Our path follower module uses

a pure-pursuit controller with a look-ahead distance of
1.0m to track this path. We limit the forward velocity
of the robot in this mode to 0.6m/s. The twist command
generated by the pure pursuit controller serves as an input
to the locomotion controller (Sec. 2.1.1).

2.2. Localization and Mapping

The lunar analog conditions, such as high solar incidence
angle illumination and granular soil, pose a broad set of
challenges to the available localization modules of ANY-
mal. Leg odometry suffers from severe drift on granular
soil, visual-inertial odometry can be inconsistent due to
the adverse lighting conditions, and LiDAR odometry is
prone to degenerate in structure-less environments.

Consequently, we use a complementary multi-modal
localization and mapping approach that relies on a
loosely–coupled degeneracy–aware fusion of IMU, leg,
and LiDAR odometry [17]. The LiDAR-based odom-
etry and mapping method uses Iterative Closest Point
(ICP), which minimizes the distance between two suc-
cessive point cloud scans. However, optimizing over all
points may not lead to an optimal solution. For exam-
ple, points on a planar surface are not geometrically con-
strained in their local neighborhood. Prioritizing points
that belong to a predefined shape makes the estimation
more robust and computationally less expensive. The two
most commonly used metrics for point cloud matching
are point–to–line distance and point–to–plane distance as
used in [18]. Scan-to-map matching can lead to an incor-
rect robot pose estimate with insufficient geometric con-
straints. Therefore, the method uses IMU and leg odome-
try priors to improve the convergence rate of the scan-to-
map matching process. Health checks are performed on
the LiDAR scan-to-map matching. If LiDAR odometry
degenerates, the approach relies on IMU and leg odome-
try pose estimates to integrate the current point cloud scan
into the map. Moreover, IMU and leg odometry provide
an update rate of about 200Hz. Consequently, we use
these estimates to propagate the robot pose between Li-
DAR odometry updates that only occur at 5Hz.

2.2.1. Global Terrain Mapping

An accurate global terrain map is required to provide an
overview of the inspected area. Furthermore, it provides
the operator with valuable information for selecting ap-
propriate scientific targets in the ROI. To provide a more
expressive representation than raw point clouds, we con-
vert the map from the LiDAR odometry and mapping
framework (Sec. 2.2) into a 2.5D model using the grip
map library [19]. The point cloud generated by the Li-
DAR odometry and mapping algorithm stores points that
are useful for localization in a volumetric map with a
resolution of 20 cm. Since this map may not be dense
enough to provide a global 2.5D representation, empty
cells are inpainted by filling them with neighboring val-
ues. Furthermore, the grid map module discards points
higher than 4m above the robot.
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Figure 3: (A) ANYmal GLIMPSE with the three scien-
tific payloads MICRO, RAMAN, and CTX. (B) Close-up
MICRO with the visible LED ring. The hull contains the
microscope, focus actuation and the control electronics.
(C) Close up of RAMAN including the autofocus in black
(D) Close-up of the COTS inspection payload by ANY-
botics containing CTX, the pan-tilt context imager.

Fig. 5 shows the terrain surface map generated during the
first round at the SRC.

2.3. Science Payloads

We rely on a broad scientific payload suite for resource
prospection and characterization (Fig. 3). The payloads
combine the petrographic and spectrographic analysis of
the samples using optical, non-destructive means. The
GLIMPSE payload suite consists of three partially com-
plementary instruments:

1. CTX: A VIS context imager to obtain high-
resolution images of the regolith and the rocks, their
size, color, and texture

2. MICRO: A multi-wavelength UV-VIS-NIR micro-
scopic imager to get a petrographic image of the
samples, their mineral size, assemblages, and dis-
tribution, as well as identification of the accessory
minerals

3. RAMAN: A Raman spectrometer to assess the main
mineralogy of the samples.

2.3.1. CTX

CTX is a pan-tilt VIS Context Imager with a resolution
of 2.4MP and a spectral range of 400 nm to 950 nm.
CTX is part of the COTS inspection payload provided
by ANYbotics. We use CTX to acquire high-resolution
RGB context images of selected samples and their envi-
ronment. CTX can acquire images using two different
imaging modes:

1. Regular: context image with a fixed horizontal im-
age footprint width of 2.5m

2. Zoom: close-up image with a fixed horizontal image
footprint width of 0.3m

CTX allows for the morphologic, lithologic, and petro-
graphic description of the samples under varying illumi-
nation conditions, namely both from the sunlit and the
shadowed side. We further use CTX data to character-
ize the physical properties of the surface material in the
ROI and prioritize and contextualize the samples to be
studied with the RAMAN payload. To query CTX im-
ages of a sample, the operator can set a target marker in
the onboard computed map at the respective position via
the user interface and request a regular or a zoom image.
Examples of CTX data and results are presented in Fig. 6.

2.3.2. MICRO

MICRO, the UV-VIS-NIR microscopic imager, com-
prises a Dino-Lite USB microscope (model AD4113T-
I2V) integrated into a custom-designed housing, includ-
ing a linear actuator mechanism and control electronics
to focus on the sample surface. Similar microscopic im-
agers already flew on missions to Mars (Mars Exploration
Rovers (MI) [20], MSL Curiosity (MAHLI)[21]) and are
also anticipated to fly on the European ExoMars mission
(MicrOmega [22], CLUPI [23]).

The microscope has four UV light-emitting diodes (LED)
with a peak emittance at 395 nm, and four IR LEDs at
940 nm. The instrument chassis hosts a printed circuit
board with 48 additional RGB LEDs (red, green, and blue
at 620 nm, 525 nm, and 470 nm, respectively) to cover
the entire visible spectrum and illuminate the lunar ana-
log samples independent of the ambient lighting condi-
tions. The LEDs can individually be switched on and off
to visually assess the spectral reflectivity at the various
wavelengths from UV to NIR. The LEDs are placed in a
ring around the microscope. The LED ring enables circu-
lar, uniform illumination and illumination from different
sides to cast shadows from any specific angle. This ap-
proach supports the petrographic assessment of rock sam-
ples based on topology and roughness, micro-scale grain
size distribution, and mineralogical composition.

The camera’s 1.3 megapixel CMOS chip records spectral
maps ranging from 390 nm to 1050 nm. With a working
distance of up to 51.7mm, various magnification rates
between 20 – 230x, and a maximum field of view of
25.1mm x 20.1mm, the captured images allow for a re-
liable petrographic identification by a trained geologist.
However, they can also be used to train machine learning-
driven classification algorithms.
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2.3.3. RAMAN

Raman spectroscopy is an optical, non-destructive ana-
lytical technique that provides in-depth information about
the sample material, including its chemical composition,
phase, crystallinity, and molecular interactions. We use
the dust and waterproof Metrohm Raman XTR spectrom-
eter with a 785 nm scanning laser. This device acquires
spatially averaged Raman spectra within a spectral range
of 400 cm−1 to 2300 cm−1 and at a resolution of 8 cm−1

to 10 cm−1. It can be used either in standard mode
or with an XTR procedure, which provides fluorescence
suppression. RAMAN is equipped with a telescopic lens
with auto-focus capabilities, allowing spectral acquisition
from a distance of 0.25m to 1.5m. The auto-focus sig-
nificantly simplifies operations compared to devices that
need to be directly in contact with the sample surface for
accurate measurements.

We use a dedicated COTS analysis tool from Metrohm
to match acquired spectra against the existing Raman li-
braries containing spectral data on lunar minerals from
the PANGAEA database [24] and previous measurements
acquired on different minerals with the Mira XTR. The
software outputs a compositional analysis of the inves-
tigated sample, including the percent weightings of the
various minerals composing the sample. An example of
a RAMAN measurement is show in Fig. 6.

2.4. Networking

Our software stack mainly uses Robot Operation Sys-
tem (ROS) for inter-process communication. However,
ROS is not suited for communication over high-latency
networks because TCP handshakes are required for the
topic subscription even if the message transport itself runs
over UDP. Furthermore, ROS service calls require several
handshakes for each call. For these reasons, we use the
software package nimbro network1 for communication
between ANYmal GLIMPSE and mission control. nim-
bro network has been used in several missions to ensure
communication over unreliable networks [25][26]. No-
tably, team CERBERUS used it in their winning approach
at the DARPA subterranean challenge [14]. Team Nim-
bRo originally developed it for the DLR SpaceBotCUP.
Therefore, the software also closely matches the require-
ments of the SRC. It contains features such as selectable
UDP or TCP transport for both topic and service trans-
port, rate-limiting for each topic, and optimal transparent
compression.

Only the core data is constantly streamed to mission con-
trol to use minimal network bandwidth. This data in-
cludes the TF tree to visualize the robot’s position in the
map and the camera streams of the Alphasense cameras
for navigation. Large data packages that require a lot of
bandwidth, such as the LiDAR odometry map or the local
elevation map, are only sent on operator request. While

1https://github.com/AIS-Bonn/nimbro network

Table 1: Mission overview of GLIMPSE at the first field
trail of the SRC.

Traverse Distance to ROI 107m
Total Distance travelled 167m

Traverse Time 43 min
Total Mission Time 1 h 37 min
CTX images taken 37
RAMAN spectra 3
MICRO images 0

constantly streamed data is transferred via UDP, the on-
request topics and science payload results are transmitted
via TCP to ensure that the data arrives at Mission Control.

3. RESULTS AND DISCUSSION

3.1. Mission Results

Tab. 1 shows the mission overview in numbers. ANYmal
GLIMPSE crossed the traverse area with a path length
of 107m in 43min. The robot was able to traverse all
three ramps in the traversal region (Fig. 4). The only dif-
ficulty in traversing the area was a conservative threshold
on the traversability estimation in the local planning mod-
ule, which forced the operator to bypass the local plan-
ning module to traverse the steepest ramp. While the op-
erating speed of the robot (0.6m/s) would have allowed
a much faster traverse, the main limitation in operating
speed was the network communication and the loss of
signal. We elaborate further on these issues in Sec. 3.2.
We did not observe any significant issues with sinkage
on the loose granular soil in the ROI. The robot was able
to locomote robustly within the ROI and reach all com-
manded target poses for payload operations.

As described in Sec. 2.2.1, we generated the global ter-
rain map by running a grid map module over the Li-
DAR odometry map. We ran the global terrain mapping
pipeline on different underlying LiDAR odometry maps
for the traverse region and the ROI, respectively. The
reason was that early in the mission, the LiDAR odom-
etry maps sent to mission control contained denser data
in the traverse region. We further explain this issue in
Sec. 3.2.2.

We gathered data from seven scientific targets in the ROI,
containing the six rocks of interest and one granular soil
sample. We acquired a total of 37 CTX images and three
Raman spectra. CTX was a powerful tool both to en-
able the scientific analysis of all samples and to prior-
itize the samples for further payload deployments. We
deployed RAMAN on two rock samples. The robot took
all measurements from the sunlit side with and without
XTR. We did not deploy MICRO because positioning it
close to a sample was difficult and time-consuming. In
most cases, the information delivered by CTX and RA-
MAN was enough for a rough estimation of the sample
lithology and mineralogical composition. Fig. 6 shows
an example of the gathered data.



6

Figure 4: (A) ANYmal GLIMPSE crossing the steepest
obstacle in the traverse area. (B) ANYmal GLIMPSE in
the ROI. Despite the high sinkage on the granular soil,
locomotion worked robustly.

3.2. Lessons Learned

3.2.1. Networking

During both our preparation tests and the SRC field trial,
we experienced severe networking issues when operating
the robot via a delay emulator. Instead of receiving data
streams at the nominal frame rate with a 2.5 s delay, data
usually arrived tens of seconds late. Data was often en-
tirely lost, for example, when the operator requested CTX
images. While the robot operation was still possible, a
lot of the mission time was lost waiting for data to arrive,
for example, to see whether the robot reached the desired
target pose. After the SRC field trial, we investigated the
network settings more closely. We realized that commu-
nication via TCP leads to network congestion because of
the excessive time between handshakes. Moving all data
transmission to UDP and tuning topic rates mitigated this
issue.

3.2.2. Global Terrain Mapping

While the reported global terrain map at the SRC reason-
ably shows the overall terrain as well as features at around
0.5m to 1m, small features are not visible and the over-
all resolution and accuracy of the map can be drastically
improved. One reason for the limited global terrain map
quality is that we used the same map for localization and
terrain mapping. The LiDAR odometry map used for lo-
calization (Sec. 2.2) is down-sampled to reduce the com-
putational burden and be able to run the localization at
5Hz. However, this down-sampling meant that the grid

Figure 5: Global terrain maps with indication of the
prospected rocks in top (A) and oblique view (B). The
colorbar on the bottom left displays the terrain height.
Rock positions are indicated with red dots.

map module had to work with very few data points of the
terrain, which forced us to inpaint the incomplete data
and use an early-mission LiDAR odometry map to create
the terrain map of the traverse area. In the future, a global
terrain mapping approach independent of the localization
pipeline could drastically improve the global terrain map
because it can be accumulated independent of computa-
tional considerations for a localization pipeline. Further-
more, a way of including textures would significantly en-
hance the usefulness of the global terrain map for future
mission planning.

In addition to the global terrain map for scientific opera-
tions, a more expressive representation for the robot op-
erator is desirable. During this SRC trial, the operator
mainly worked with raw LiDAR scans, local elevation
maps, and point clouds from the LiDAR odometry and
mapping module. The resolution of this data was often
not high enough for a quick assessment of the robot’s en-
vironment. A dense and expressive operator map repre-
sentation should contain enough information to make fast
decisions during the traverse. However, it still has to be
lightweight to prevent network congestion when the op-
erator requests the map.

3.2.3. Autonomy

During our field trials, it became evident that every op-
erator interaction is much more time-consuming over the
high-latency network than in terrestrial operations. Ev-
ery interaction that can be prevented results in a sub-
stantial time gain in which the system can collect more
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Figure 6: (A) Example of a context image taken with
CTX. (B) CTX close-up image. (C) Acquired Raman
spectrum of the same rock.

data. While we think that the autonomy we provided dur-
ing the first SRC trial was a good first baseline, there is
still room for substantial improvements. The robot did
not have enough autonomy to proceed with the mission
for several minutes during a loss of signal, for example,
to autonomously continue rock sampling or navigate be-
tween samples. During all losses of signal, the robot was
standing and waiting for operator commands. Providing
this autonomy means that the robot first has to detect the
loss of signal and then act according to the current stage
of the mission. This decision-making is non-trivial. It
depends on how much of the ROI the robot has explored,
how many relevant samples it has found, and the data it
has collected from these samples. Furthermore, the au-
tonomous operation needs to be very robust to prevent
failure cases during a loss of signal. Generally, every
autonomy module needs to be highly robust because the
operator has no means of quickly aborting dangerous ma-
neuvers via the high-latency network.

3.2.4. Payload Selection and Operation

The CTX imager proved to be a powerful tool: On one
hand, CTX images in regular mode were imperative to
localize and prioritize scientific targets for further analy-
sis. On the other hand, zoom images provided an excel-
lent first textural and lithological context of all samples
within the ROI, both from the sunlit and shadowed side.
However, for a proper mineralogical analysis of the rock
samples and regolith, more extensive geochemical map-
ping with RAMAN and MICRO is required to support the
visual interpretation of the CTX images.

One essential step to achieving more RAMAN and MI-
CRO samples is the proper placement of these payloads.
The rigid mount to the robot’s main body made it diffi-
cult to properly bring RAMAN in position, often requir-
ing several approaches to the sample. For MICRO, it was
impractical to get the payload close enough to the sample
to focus on the sample surface. An additional mechanism
is required to position these payloads rapidly and reliably.

3.2.5. Data Processing

In the first field trial, we had no means of assigning data
to specific rocks except data time-stamps. This approach
is error-prone, and postprocessing the data is inefficient.
Furthermore, it does not scale to more data coming in at
a higher frequency, for example, when autonomy is im-
proved. Expressive metadata will be critical in the future
to enable a fast data evaluation and prevent errors.

4. CONCLUSION

In this work, we presented GLIMPSE, our contribution to
ESA SRC’s first field trial. We showed that legged loco-
motion is a powerful solution for rapid and reliable mo-
bility in lunar analog environments when equipped with
modern navigation, localization, and locomotion control
modules. During the trial, the robot had no issues over-
coming the obstacles of the traverse zone or the granular
materials in the ROI. GLIMPSE’s broad science payload
suite allowed for accurate target rocks analysis given the
limited mission time.

Based on the lessons learned from this field trial, we con-
sider the following aspects crucial for the next phase of
the challenge and potential future mission deployment:

• A high level of autonomy for mobility and data ac-
quisition, especially during loss of signal episodes.

• Accurate global terrain mapping including textural
information to understand the geological context of
the samples.

• Deployment of all scientific payloads to acquire de-
tailed data to support the visual interpretation of
rocks.

We are convinced that these challenges can be overcome
and that legged robots will become viable partners for
future planetary missions.
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