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ABSTRACT
As the amount of orbital debris grows so too does the
need for on-orbit repair and deorbit solutions to avoid
cascading Kessler syndrome. While a number of op-
tions have been proposed for capturing defunct satel-
lites and other high-value debris, methods for perform-
ing close-proximity rendezvous with these objects are
also necessary. However, a significant portion of these
objects are tumbling with unknown angular orienta-
tion and rate; the rendezvous procedure for these tum-
bling objects is complex and must be performed in real-
time, precluding human teleoperation or offline, on-the-
ground solutions. Therefore, autonomous rendezvous
for these tumbling targets is highly desirable. A fully
autonomous rendezvous pipeline was recently proposed
by the authors, and has been extended in this paper to
a working demonstration in microgravity on resource-
constrained hardware. Utilizing factor graph-based
SLAM to identify a target object’s rotation, nonlinear
programming-based motion planning, and robust control
for safe online-updateable reference trajectory tracking,
this work overviews the TRACE (Tumbling Rendezvous
via Autonomous Characterization and Execution) algo-
rithmic pipeline in its entirety. The pipeline is shown in
practice on a sample rendezvous case with a tri-axially
tumbling target. The centerpiece of this work is on-
orbit results following a two-year hardware implemen-
tation and microgravity testing campaign using NASA’s
Astrobee robots. A number of implementation consider-
ations are discussed, including augmentations to the As-
trobees’ localization system. This work represents the
first autonomous on-orbit rendezvous with an uncharac-
terized, uncooperative tumbling target, to the authors’
knowledge.
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Figure 1: The TRACE pipeline, consisting of a SLAM
observation period (green), motion planning period (red),
and a robust tracking period (blue). The pipeline is run
in sequence, with outputs from previous stages feeding
subsequent stages of the rendezvous procedure.

1. INTRODUCTION
Autonomous close proximity rendezvous is desirable to
repair or refuel damaged satellites, or to capture and
safely deorbit debris. A number of authors have pro-
posed solutions to rendezvous with a static object [1]
[2], and even demonstrated a variety of methods to de-
orbit debris using a passive system like a net or harpoon
[3]. A significant fraction of this debris is in free tumble
[4], a more challenging case than non-rotating or sim-
ple rotation (i.e., flat spin). The unintuitive nature of the
Newton-Euler dynamics precludes direct human teleop-
eration and significant uncertainty in how individual ob-
jects are tumbling demands real-time onboard identifica-
tion of target properties [5][6]. A number of techniques
propose deterministic motion planning solutions assum-
ing knowledge of the Target’s tumble [7][8] [9] [10] [11]
[12]. However, rendezvous with an uncooperative, un-
certain, tumbling target was previously undemonstrated;
what’s more, a complete autonomous estimation, plan-
ning, and control pipeline had not been previously shown



until [13]. This work introduces the expanded TRACE
pipeline for autonomous robotic rendezvous with an un-
certain, tumbling target and showcases the pipeline’s on-
orbit results from the International Space Station (ISS)
during an on-orbit test campaign. Practical implementa-
tion details are considered alongside the presentation of
selected results from on-orbit experiments.

2. ASTROBEE AND THE AUTONOMOUS REN-
DEZVOUS PROBLEM

This work focuses on initial results of an experi-
mental campaign for autonomous rendezvous using
two Astrobee robots on the ISS, conducted under the
ROAM/TumbleDock test campaign, a collaboration be-
tween MIT, DLR, and NASA. In this series of ex-
periments one robot serves as the autonomously con-
trolled “Chaser,” and another as the unknown “Target.”
The Target mimics the anticipated tumble of the Envisat
satellite, a high-priority goal for active debris removal.

NASA’s Astrobee robots are a set of free-flying robots
which operate aboard the ISS. The Astrobees enable mi-
crogravity autonomy research through a suite of sen-
sors and three reconfigurable general-purpose proces-
sors. The Astrobees utilize impellers to provide full
holonomic propulsion within the Japanese Experiment
Module (JEM), with multiple sensors for navigation
including cameras and an inertial measurement unit
(IMU). The flight software is primarily implemented
on two general-purpose Snapdragon-based processors,
which utilize Ubuntu 16.04 and ROS [14].

The autonomous rendezvous problem considers a close
proximity rendezvous maneuver between two of the As-
trobees, analogous to the last ∼20−40 [m] of an on-
orbit approach operation, with the goal of safely reaching
a predefined offset point called the mating point (MP),
fixed in the tumbling Target’s body frame. To complete
this analogue, an artificial hull similar to the shape of En-
visat is superimposed on the Target in the motion plan-
ning computation, Fig. 2. From the point of view of the
Chaser spacecraft the Target is non-cooperative, passive,
and uncharacterized. A strategy is required to perform
ingress to the uncertain tumbling Target and reach a pre-
defined offset mating point.

The Chaser spacecraft which will perform the rendezvous
begins at some known initial standoff distance, in this
case 1.5 [m] along the ISS y-axis, and is equipped to
perform visual estimation of the Target. Kinematic and
velocity state constraints X on the Chaser motion are de-
termined by the tumbling Target’s artificial collision vol-
ume, and operational limits of the Chaser. The Chaser
also has input constraints U . The Chaser has approximate
knowledge of the Target’s inertial parameters, but not its
rotational state. Finally, unstructured uncertainty on the
Chaser motion may exist, i.e., additive uncertainties lying
in a convex set w ∈ W .

Three main tasks must be successfully completed to ac-
complish the close proximity tumbling target rendezvous

Figure 2: A visualization of the simulated virtual obsta-
cle set superimposed on the Astrobee robots for motion
planning purposes. The Target robot has the additional
collision geometry.

task:

1. Identify the Target’s tumble, consisting of its atti-
tude and angular velocity (RIT and TωT ) and, op-
tionally, its inertia tensor (I).

2. Create a collision-avoiding, fuel-conserving,
constraint-aware motion plan, P .

3. Perform precise control, ideally with robustness
guarantees against prevailing uncertainty levels, W .

The interested reader may consult [13] for a full problem
formulation.

3. METHODS
The three tasks satisfying the tumbling rendezvous task
are accomplished by the TRACE pipeline, briefly out-
lined in Fig. 1. First, an estimation phase utilizing
point cloud analysis of the tumbling Target feeds a factor
graph-based approach which results in an estimate of the
Target’s rotational state, Tatt := {RIT ,

T ωT }. SLAM
computations are additionally available online to provide
real-time updates of RIT . Based on predicted T̂att(t),
a nonlinear programming-based trajectory optimization
approach computes a motion plan P := {xk,uk} with
respect to a model-based propagation of the Target’s ro-
tational motion, R̂IT (t). Finally, an uncertainty deter-
mination module analyzes possible deviations in P if it
is updated online, informing a robust controller that pro-
vides general purpose robustness against an estimated un-
certainty bound, W . Finally, the mating point is reached
and the mission concludes. TRACE executes the above
in sequence, proceeding clockwise in Fig. 1, paying close
attention to hardware timing constraints of each compo-
nent, noted as t∗ in Table 1. These components are briefly
summarized here; the reader is referred to [13] for a more
detailed discussion.



Table 1: Approximate timing information for TRACE’s execution.

Time Marker Elapsed Time [s] Duration [s]

Observation start (t0) 0 -
Prediction complete (tpred) 120 120 (fixed)

Motion planning complete (tmp) ∼ 130− 180 ∼ 10− 60 (safe upper bound)
Rendezvous start (tstart) ≥ 180 (safe upper bound) -

Rendezvous complete (tf ) ∼ 210− 270 ∼ 30− 90

3.1. Visual Estimation

Simultaneous Localization and Mapping (SLAM) is the
two-fold problem of determining a robot’s pose, TIB ∈
SE(3) while constructing its surrounding environment.
A SLAM problem emerges for the tumbling Target es-
timation case where the Chaser must determine its nav-
igational state xIC ≜ {TIC ,vC ,ωC}, and the Target’s
attitude state xIT ≜ {RIT ,ωT }, while disambiguating
relative motion.

However, measurements obtained by the Chaser are never
perfect, and so the values above are not known precisely.
Moreover, the Target’s initial angular state is entirely un-
known. Determining the quantities above under uncer-
tain measurements then becomes a nonlinear optimiza-
tion with the goal of minimizing probabilistic fit error.
A line of research [15][16][17] solves the on-orbit in-
spection problem by applying various SLAM techniques,
ultimately settling on a real-time factor graph-based ap-
proach. The main variables become the Chaser’s state
history xIC , the Chaser’s pose history w.r.t. the Target
TGC , the Target’s principal axis frame offset from an ini-
tial guess of the frame rGT , and the Target’s principal
axis frame offset w.r.t. the inertial frame, rIT .

A number of factors introduced by Oestreich in [18] re-
late the variables, forming a graph structure of probabilis-
tic constraints between variables. Front-end computation
to perform pose estimation using point cloud keyframes,
K, obtained from a time of flight camera are accom-
plished using Teaser++ [19]. Angular velocity is approxi-
mated using successive estimates of the Target’s pose fol-
lowed by a conversion to the Target’s body frame. RGT

is additionally determined, post-factor graph solution, us-
ing Setterfield’s polhode analysis procedure [16]—this is
the final key to creating a Target frame angular velocity
estimate.

Finally, the above procedure results in a model of the Tar-
get’s motion,

MT := {J1, J2,RIT ,
T ωT } (1)

which can be employed for motion prediction. J1 ≜ Ixx

Izz

and J2 ≜ Iyy

Izz
are inertia ratios, defined from principal

axis moments of inertia. Note that these values are esti-
mated with accompanying statistics on their uncertainty,
which are useful in feeding the robustness portions of the
pipeline.

3.2. Motion Planning

The global motion planner’s role is to produce a plan P
appropriate for the nominal system model MT produced
by the visual estimation module. This is accomplished
using a nonlinear optimization-based approach, where
the mechanical energy is minimized as a function of the
free parameters of three B-splines—one for each trans-
lational degree of freedom—and subject to position, ve-
locity, actuation, plume impingement, and collision con-
straints. A warm start is provided to the nonlinear op-
timization problem through an offline-generated look-up
table (LUT). The LUT is parameterized by initial Target
state values, against which the estimated state of the Tar-
get is compared to determine which LUT entry should be
used for the initial guess of the optimization parameters.

The generated motion plan P is defined and invariant in
the Target’s body frame for the purposes of efficient col-
lision avoidance under trajectory tracking. To maintain
feasibility, the plan as viewed in the inertial frame IP
must preserve the trajectory as viewed in the Target body
frame, BP .

3.3. Robust Control

To enable control robustness guarantees, an uncertainty
bound w ∈ W ⊂ Rn for the Chaser’s state dynamics
must be defined. One uncertainty source arises from the
Target’s estimated nominal model, MT , which affects
the Chaser through online updates of the reference tra-
jectory. In the tracking control problem this means the
reference trajectory IP may be adjusted from online vi-
sual estimation updates. In addition, general purpose un-
certainty (noise) can be added into this uncertainty bound
to account for other dominating uncertainty sources—in
practice, Astrobee’s localization system is the dominant
uncertainty source.

Finally, the uncertainty bound W , the inertial frame ref-
erence trajectory IP , and estimates of the Chaser’s true
state x̂ are fed to a robust tube MPC control strategy to
track the reference trajectory with a tube robustness guar-
antee. This tube robustness guarantee holds as long as
W is not too large. This ensures that nominal MPC in-
puts, umpc, can be sufficiently tightened to counter dis-
turbances alongside ancillary disturbance rejection con-
troller input commands, udr.



3.4. State Estimation for Control

To control the dynamics of each Astrobee robot for the
considered rendezvous scenario, the local controller re-
quires low-noise and smooth estimation of its motion
state, i.e., xIC ≜ {TIC ,vC ,ωC} for the Chaser, and
xIT ≜ {TIT ,vT ,ωT } for the Target. To this end, a two-
layer approach was used for the state estimation to aug-
ment the default Localization Pipeline, shown in Fig. 3.
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Figure 3: Controller block diagram for the ith Astrobee,
i = C for the Chaser and i = T for the Target. Exten-
sions to the default Localization Pipeline are indicated in
yellow.

.

First, the state (x̃Ii) is roughly estimated by the default
localization pipeline using a kinematic sensor fusion of
exteroceptive (cameras) and proprioceptive (IMU) mea-
surements [13, §3.2]. However, the transitioning of opti-
cal features (s) from the field of view might result in es-
timation discontinuities, which negatively affects control
performance. Furthermore, air circulation in the ISS can
cause a disturbance wrench (Fi) that perturbs the desired
Astrobee motion. Hence, and secondly, a model-based
EKF (indicated by the yellow blocks in Fig. 3) was added
to provide not only a smooth and precise estimate of the
motion state (x̂Ii), but also an estimate of the disturbance
wrenches (F̂i). The EKF uses the governing Newton-
Euler equations to predict x̂Ii, while exploiting x̃Ii as
measurements.

To this end, the geometric EKF in [20, §IV] was extended
in two ways. Firstly, the process model was augmented
with a constant disturbance model, Ḟi = 0. Secondly,
the measurement model was extended to include velocity
feedback (ṽi, ω̃i).

4. RESULTS AND PRACTICAL CONSIDERA-
TIONS

The TRACE pipeline was successfully run on-orbit in
a series of experiments showcasing multiple rendezvous
with a tumbling Astrobee robot, as in Fig. 4. SLAM, mo-
tion planning, and robust control/uncertainty determina-
tion modules were run in real-time on the Astrobee hard-
ware to determine the tumbling Target’s motion, create a
safe motion plan, and track the plan despite preset uncer-
tainty levels. Each of the modules’ on-orbit outcomes are
now outlined, and the unique challenges of moving to a

hardware implementation are considered. TRACE’s re-
sults of the first autonomous on-orbit rendezvous with an
unknown tumbling target are shown.

4.1. Practical Considerations

Several practical considerations emerged from integra-
tion and hardware testing of the TRACE pipeline on the
Astrobee robots. Some of the most important observa-
tions are briefly discussed before elaborating on experi-
mental results.

The Limits of Onboard Localization On-orbit test-
ing faced a significant challenge with Astrobee’s de-
fault localization module, which was prone to infeasible
jumps and general high root mean square error (RMSE),
well beyond the typical uncertainty set W computed
to account for online tumbling Target updates. Ulti-
mately, the two-layer state estimation approach to the lo-
calization presented above was developed to overcome
these discontinuities. This is useful practical experience
for implementation of TRACE: real uncertainty sources
might often differ from those expected, and W0—the
base uncertainty set before accounting for additional
uncertainties—should be designed with buffer in mind
to account for these “unknown unknowns.” However, as
noted in Section 3.3, sometimes it is impossible to pro-
vide sufficient robustness; in these cases, the only options
are to proceed with lower robustness guarantees, reduce
uncertainty, or relax constraints.

Software Integration and Development for an Evolv-
ing Platform Some major practical takeaways from the
development and hardware implementation of TRACE
include the need for early standardization and the prac-
tical difficulties of moving to hardware. Hardware im-
plementation is vital, giving a direct look at the ac-
tual sensors, noise, computational power, and environ-
ments that will be seen by the algorithms developed for
autonomous systems. However, hardware implementa-
tion leads to many complications, particularly in mov-
ing from desktop-based computational tools to embed-
ded programming that may be lacking important libraries
or computational power, for example. Additionally, be-
cause of the number of algorithmic components, stan-
dardization and message-passing procedures must be set-
tled early in development; luckily, ROS takes care of
some of this complexity on the Astrobee platform. Any
interface changes during software development must also
be promptly communicated to prevent integration incom-
patibilities (e.g., a changing output rate or topic name).
Some practical lessons learned are further documented in
[21].

Experimental Environment Two considerations of
the environment in which the experiment occurs must be
noted. Almost immediately in early hardware tests, it be-
came apparent that Astrobee’s impellers produce a suc-
tion effect which can pull the robots forcefully towards
the exterior walls of the test space. An additional min-
imum distance from the published Japanese Experiment



Figure 4: Successful rendezvous maneuvers from the ROAM-1 and ROAM-2 on-orbit tests. The Chaser, highlighted,
approaches the Target from (a) - (d) after estimating the Target’s attitude state, ultimately reaching the offset mating point.
Note that Target and Chaser configuration is reversed between each test.

Module (JEM) dimensions was therefore accounted for
in the definition of the position constraints. Secondly, the
JEM is in active and daily use by the crew aboard ISS.
Sometimes cargo and other objects may be moved, result-
ing in environmentally-influenced constraint changes.

Figure 5: On-orbit data of a successful rendezvous ma-
neuver, which was tracked using robust tube MPC.

4.2. The ROAM/TumbleDock Flight Experiments:
On-Orbit Results

A number of experiments were performed on-orbit, eval-
uating different portions of the algorithmic pipeline; full
pipeline results were obtained on a subset of tests, fol-
lowing the procedure of Fig. 1. A single test is high-
lighted here, which produced the motion plan P shown
in Fig. 5, with the actual tracked plan shown against the
inertial frame reference trajectory. Despite localization
troubles, multiple successful rendezvous maneuvers were
achieved. On-orbit results demonstrated that TRACE’s

modules can be run in real-time on resource-constrained
hardware.
Visual Estimation Visual estimation of the Target’s
tumble using the procedure outlined in Section 3.1 was
performed for the period tpred, after which principal axes
were estimated resulting in the finalized estimate of the
Target’s rotational state. Attitude estimation results pro-
duced using the procedure for a sample experimental run
are shown in Fig. 6. The estimated Target model, MT ,
and its associated state covariance ΣT were then made
available to the motion planning and uncertainty deter-
mination modules.

Computational times for on-orbit results are shown in
Fig. 7. The SLAM module maintains a projected 0.5 [Hz]
rate on hardware, with a majority of computational effort
devoted to feature identification and matching of Target
features.
Motion Planner The motion planner was able to pro-
duce a plan every time it was called on-orbit, in a mean
time of 9.16 [s]. The trajectories produced are highly
contingent on the values provided to the planner by the
visual estimation step. As such, the initial positions of
the Target and Chaser were not always as expected by the
motion planner. The motion planner has been shown to
tolerate a Chaser initial position up to 60 [cm] displaced
from the expected position.

The trajectory produced for the test highlighted in this
section can be viewed in Figs. 5 and 8, indicated by the
dotted curve in each plot. This trajectory was planned
with information indicating that the Chaser was located
at [0.25, 0.08, 0.15] [m] relative to the centroid of the
JEM, or about 0.3 [m] from its expected position, and
was generated in 8.45 [s].

Robust Tube MPC Fig. 8 shows the robust tube MPC
tracking and ancillary/nominal controller activations for
the successful rendezvous in the lower figure of Fig. 4



Figure 6: Attitude estimates produced online by the visual estimation component of the pipeline up to time tpred. The
values at right show attitude estimate quality after alignment with the true Target principal axes. “Truth” values shown
are the Target’s own attitude estimate.

Figure 7: Timing information of various components of the SLAM system. Overall updates maintain a 0.5 [Hz] update
rate on hardware.

and also shown in Fig. 5. Disturbance rejection control
worked as expected, tackling general disturbances from
the reference trajectory while nominal MPC provided
longer-horizon guidance at 5 [Hz]. For on-orbit results
tube robustness still provides a general purpose robust-
ness guarantee against set uncertainty levels, a desirable
feature. Robust translational tracking was achieved de-
spite disturbance sources such as the localization system
mentioned in Section 4.1.

Model-Based EKF The experimental results for the
model-based EKF on the Target Astrobee are provided
in Figs. 9-10; the EKF was also used on a subset of runs
for Chaser localization improvement. The position and
velocity estimates provided by the localization pipeline
(blue) and the EKF (red) from Fig. 3 are shown in Fig. 9.
It can be seen that the localization estimates tend to suf-
fer sporadic discontinuities (dashed lines). The model-
based EKF is not affected by these discontinuities as they
are not in agreement with the Astrobee model. Note that
both position and velocity estimates are required for the
motion stabilization of the Astrobee, and the removal of
discontinuities was a major benefit. To validate the esti-

mation of disturbance forces, fT•, the Astrobee actuators
were turned off so that the commanded forces of the con-
troller serve as a disturbance. In Fig. 10, the actual (red)
and the estimated (blue) disturbance forces are shown,
which demonstrates the estimation convergence.

5. CONCLUSION
The on-orbit demonstration of TRACE is a significant
step toward autonomous rendezvous with tumbling tar-
gets, uniting multiple key algorithmic components of
the autonomy pipeline. Without a priori target tumble
knowledge, TRACE can determine how to best reach a
safe offset mating point, from which docking procedures
could be initiated. Robustness and constraint satisfaction
despite significant uncertainties are also incorporated into
the pipeline logic.

The estimation, motion planning, uncertainty propaga-
tion, and robust control components of the TRACE
pipeline have been discussed and their application in an
on-orbit demonstration were shown. This is, to the au-



Figure 8: Robust tube MPC tracking of a successful rendezvous maneuver trajectory during ROAM-2. Note that u∗ is
the sum of constraint-tightened nominal MPC (u∗,mpc) and disturbance rejection control (u∗,dr), defined in Sec. 3.3.
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thors’ knowledge, the first on-orbit demonstration of au-
tonomous rendezvous with an uncertain tumbling target.
Future work aims to address the localization concerns
discussed in Section 4.1, additional speed improvements
to the body-frame motion planner, and expanding robust-
ness constraints to better handle large disturbance sets
and the nonlinear attitude dynamics.
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