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ABSTRACT

This work presents the results of the preliminary analysis
for realizing a robust multi-modal perception framework
on mobile platforms at the German Aerospace Center
(DLR). Within the evaluation, our focus is directed
towards investigating robust approaches for localization,
place recognition, and navigation in the visual domain.
In addition to the analytical examination of promising
state-of-the-art methods, an experimental study is carried
out based on real-world datasets from mission-related
environments. With this, the prevailing environmental
properties are evaluated to identify the best-suited visual
abstraction and characterization frameworks. In the end,
we summarize our findings and realizations in recom-
mendations for improving situation awareness within the
considered projects.
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1. INTRODUCTION

Human spaceflight beyond low earth orbit has gained
more and more interest in recent times. Especially in
long-running missions and exploration of extraterrestrial
bodies, robotic assistance would significantly increase
research capabilities and provide a valuable aid to hu-
man operators. To further intensify research efforts in
humanoid service and assistance robots, the German
Aerospace Center (DLR) is currently conducting two re-
search projects, Surface Avatar (SurfA) and SMiLE, with
different fields of focus. In order to reduce the workload
for human operators, robots have to be equipped with au-
tonomous features. Therefore, the main requirement here
is to provide a robust and accurate working localization
and perception system. Especially in collaboration with
on-site human operators and other participating robots,
establishing situation awareness is essential to ensure
operational safety.

In this work, we analyze mission-related environments
for the development of application-specific multi-modal
perception systems. Hereby, our focus is directed towards
investigating robust features with particular attention to
technical characteristics and internal boundaries of par-
ticipating robotic systems. In addition, we target to

identify the spatial distribution of perceptional properties.
Therefore, an experimental evaluation is conducted with
state-of-the-art visual feature extraction frameworks in
mission-specific environmental settings.

2. BACKGROUND

2.1. Mission Setup

Starting with the space domain, SurfA, in cooperation
with the European Space Agency (ESA), is conceived as
a technological demonstrator focusing on man-machine
collaboration based on different levels of autonomy.
Within the mission, an astronaut on board the Interna-
tional Space Station (ISS) controls the actions of ground-
based robots in an extraterrestrial environment either by
executing task-level commands or taking direct control
in teleoperation mode. Therefore, various robotic plat-
forms are involved, including smaller exploration units
with limited processing resources, conventional rovers
for planetary exploration, and humanoid-like robots for
complex manipulation. Apart from the space domain,
SMiLE explores the possibility of integrating robotic
assistants in health and elderly care. Different levels
of autonomy are investigated, including granting direct
control capabilities for medical staff to initiate first aid
actions in case of emergencies. The platforms used in this
project vary from motorized wheelchairs with a robotic
arm to humanoid-like robots as deployed in SurfA.

To fulfill the research objectives, robots have to position
themselves in the mission environment reliably. As all
participating robots are equipped with RGB or RGB-D
cameras, passive visual sensors are the means of choice
for primary localization and navigation tasks.

2.2. Perception in the Visual Domain

Visual images have long been utilized for several pur-
poses, as it provides a significant amount of information.
Especially in recent times, there has been a growing inter-
est in visual-based approaches since they provide a robust
and cost-efficient alternative to active systems, including
infrared sensors and laser scanners. Starting with the
introduction of Visual Odometry (VO) in the 1980s, the



Figure 1: Overview of the mission-related environmental conditions within our contemplated projects. On the left-hand
side, SMiLE contains a typical urban housing setting including a kitchen and living room assembly. In contrast, the SurfA
scenario consists of three Smart Payload Units (SPUs) and the RODIN lander on the right-hand side.

ego-motion of an agent can be incrementally estimated
using only the information from a single attached camera.
Taking it a step further, Simultaneous Localization and
Mapping (SLAM) is a process in which a robot is re-
quired to localize itself in an unknown environment while
incrementally constructing a map of its surroundings.
Thus, it focuses on establishing a globally consistent
estimate of the robot’s trajectory inside the generated map
by revisiting and recognizing already mapped regions. In
terms of visual-only approaches, we selected the feature-
based method for estimating relative motion in image
sequences. Unlike the direct method based on optical
flow, information from the original image is compressed
to selected regions of interest for further processing steps.
Within this approach, only a fraction of the original data
has to be saved to generate an adequate surroundings
model for localization and navigation purposes, therefore
reducing the required hardware specifications.

In the early days of computer vision and feature detec-
tion, there was no consensus how a proper performance
evaluation framework should look like. Along with
the development of stable feature extraction algorithms
with invariant transformations, Mikolajczyk et al. intro-
duced the first comparative performance parameters for
standardized and conclusive comparison between image
processing algorithms in [1] and [2]. Several mentionable
benchmarking studies were carried out in [3] and [4]
based on these parameters. While the latter authors
concluded their evaluation with behavior verification
in practical situations, preceding studies evaluated the
methods on datasets comprising fixed, sparse image se-
quences. Besides, publications focusing on application-
related data are rare across all research branches. A
mentionable example is the study by Rondao et al. [5],
where a non-cooperative rendezvous scenario in space
was simulated. In the field of robotics, studies were
carried out dominantly with the target of performance
benchmarks in the context of VO and SLAM algorithms.
However, we did not find any relevant publications using

application-specific data since sophisticated datasets and
generic recorded image sequences are primarily used for
benchmarking studies.

3. ENVIRONMENTAL CONDITION

In the feature-based approach, visual information of an
image is analyzed and abstracted into a collection of re-
gions of interest. Starting from point features, Harris and
Stephens introduced the first reliable keypoint detection
algorithm in the late 1980s, which was later optimized
by Shi and Tomasi in their Good Features To Track
(GFTT) [6]. Invariance against scale changes was first
introduced in Lowe’s Difference of Gaussian (DoG) de-
tector as a part of his Scale-Invariant Feature Transform
(SIFT) [7]. His approach was then accelerated by Bay
et al. in the Fast-Hessian detector inside their Speeded-
up Robust Features (SURF) [8] using box filters. Based
on Laplacian of Gaussian (LoG), further improvements
considering position accuracy were made in the Center
Surround Extrema (CenSurE) [9] algorithm. To extend
the application area to mobile platforms and boost on-line
processing capabilities, Rosten and Drummon developed
Features from Accelerated Segment Test (FAST) [10].
Binary Robust Invariant Scaleable Keypoints (BRISK)
[11] further robustified this detector. Rublee et al. pro-
vided each feature with a defined orientation as part of
their Oriented FAST and Rotated BRIEF (ORB) [12]
algorithm. While most of state-of-the-art detectors are
based on the Gaussian pyramid, the Maximally Stable
Extremal Regions (MSER) [13] detector explores the
possible utilization of these characteristic regions.

After identifying stable and transformation-invariant fea-
tures, each element has to be equipped with a unique sig-
nature for comparison and recognition purposes. At first,
distribution-based descriptors are used, where the direc-
tional values are stored in vectors containing floating-
point numbers. In feature matching, Euclidean distance is
used for comparison purposes, e.g., in SIFT and SURF.



Figure 2: Exemplary images from the SurfA setting
depicting the degree of motion blur to be expected within
the contemplated projects. The image on the left-hand
side illustrates the motion-blur-free case from dataset 11,
whereas the image on the right-hand side from dataset 12
shows an increased degree of disturbance.

In pursuit of efficiency, the support region can also be
described by correlating specific properties of individ-
ual pixel pairs inside the region of interest. Hereby,
the characteristics are sampled in a binary string, and
Hamming distance is utilized for comparison and match-
ing. Promising patterns were proposed in Binary Robust
Independent Elementary Features (BRIEF) [14] and its
subsequent advancements ORB and BRISK [11], as well
as Fast REtinA Keypoint (FREAK) [15].

Moving a step further, line features extracted by, e.g.,
Line Segment Detector (LSD) [16] and the corresponding
Line Band Descriptor (LBD) [17], are highly suitable for
describing the contours of human-built objects since reli-
able orientation information is automatically included.

4. EXPERIMENTAL EVALUATION

To extend our decision-making basis regarding further
developments, we decided to benchmark the abilities of
state-of-the-art feature detection and description algo-
rithms in a reasonable frame using mission-related data.

4.1. Benchmark Metrics

For the evaluation, we introduce five performance met-
rics for an unbiased comparison between detectors and
descriptors according to [1] and [2].

Correspondence — Especially for our target of creating
a localization and mapping application, features have
to be obtained repeatedly in a reliable manner. For
the assessment of detectors, correspondence is defined
as the number of regions of interest, which could be
further utilized for, e.g., tracking purposes. To express
it mathematically, the following condition must hold

1−
RµA

∩R(HTµBH)

RµA
∪R(HTµBH)

< εO, (1)

where RµA represents the elliptic region A and RµB

region B. They are classified as corresponding, in case the
overlap between RµA and RµB , when transformed to the
reference image using homography relation H , surpasses
a given threshold value.

Repeatability — While correspondence represents the
absolute number of “useful” features, repeatability ex-
presses the same information relatively:

Repeatability =
# Correspondences

# Features in Image A
=
C+

FA
. (2)

By expressing it in the relative frame, it is a measure for
the precision of the feature extractor.

Matching Score — Apart from evaluating feature detec-
tors from a theoretical perspective, the matching score in-
dicates how well computer algorithms match the obtained
regions. Thus, it is a measure for the distinctiveness of the
feature support region. The metric is defined as

Matching Score =
C+ ∩M∗

FA
=
M+

FA
, (3)

where M+ represents the number of correct matchings,
and M ∗ the number of all matchings. A proper match is
achieved if the associated regions of the algorithmically
identified match correspond to each other according to
Equation 1.

Receiver Operating Characteristics — The character-
istics of feature descriptors are benchmarked by the
precision-detection-rate relationship, which is based on
the number of correct and false matchings obtained from
an image pair. The detection rate is defined as

Detection Rate =
# Total Matchings
# Correspondences

=
M∗

C+
. (4)

On the contrary, precision is calculated as M+ with
respect to the overall number of algorithmically identified
matchings:

Precision =
# Correct Matchings

# Total Matchings
=
M+

M∗ . (5)

Since the characteristic is sensitive to the number of
matchings, we have to select an adequate matching strat-
egy. For the following descriptor benchmark, the proce-
dure regarding nearest neighbor distance ratio (NNDR)
[2] is selected. Therefore, two regions are matched
in case the distance ratio between the first and second
nearest falls below a given threshold θ:

‖ DB −DA ‖
‖ DC −DA ‖

< θ. (6)

This restriction narrows down the number of total match-
ings. It penalizes descriptors with a high amount of simi-
lar matchings, which is unfavorable since the uniqueness
of the feature’s fingerprint is desired. To improve the
clarity, the precision-detection-rate relationship is plotted
against each other. The resulting Receiver Operating
Characteristics (ROC) is obtained by the variation of θ.

Computation Time — The last metric aims at the statisti-
cal distribution of the computation time. For comparison
reasons, time expenditure is normalized for the detection,
description, and matching of a single feature entity. It is
essential for on-line applications, e.g., the construction of
a VO, since the overall computation time is a determining
factor for the real-time capability.



Table 1: Hardware properties of the evaluation computer.

Parameter Specification
Model Dell Precision 7540
CPU Intel Core i7-9850H

Clock Rate 4.60 GHz
Memory 4 × 8 GB 2666 MHz DDR4 SDRAM

OS openSUSE Leap 15.1

4.2. Prerequisite and Preparation

4.2.1. Dataset

Forming the foundation of our examination, the datasets
were recorded with multiple Intel RealSense D435i
depth-sensing camera systems as in the actual mission
setup. For the benchmarking evaluation of visual feature
extractors, we only use information from the RGB sensor.
The camera settings are directly derived from the partici-
pating robots. Thus, the resolution is sized to 480 × 640
pixels at a frame rate of 15 Hz. The exposure and white
balance settings are set to automated mode.

To cover the related environmental conditions as best as
possible, we recorded multiple datasets containing major
landmarks and representative mission scenarios at two
different levels of information content. Table 4 gives
an overview of all considered recordings. At first, the
image sequences focus on stand-alone distinctive objects.
It allows an isolated examination of specific elements of
interest with minimized influence from the surrounding
scenery. Therefore, the first part of the examination
process contains the visual composition of both types
of the flooring, SPU, lander in the planetary exploration
setting, and the properties of the entire kitchen and living
room assembly in the SMiLE-Laboratory. By doing so,
it allows us to identify the best-suited feature detection
algorithms for every occurring object. The analysis of
stand-alone objects is carried out without considering
motion blur in the first stage, except for the examination
of the flooring. Figure 2 exemplarily illustrates the
expected degree of motion blur within our contemplated
missions. As a second step, we use image sequences con-
taining realistic mission tasks for the evaluation. Here,
we reconstructed five typical scenarios in total. For
simplicity, all movements within the setups consist of
linear trajectories.

4.2.2. Ground Truth

In order to provide a valuation basis for the performance
metrics, the ground truth relation between the evaluated
frames has to be established. The planar homography
relates to the transformation between any projected points
in the reference and target image if a planar surface
geometry is achieved. Their relationship is defined as

xAi = HxBi , (7)

where any points in image B can be projected to image A
by the application of the homography matrix H . For its

Table 2: Feature detectors for experimental evaluation.

Detector Type Class Abbr.
GFTT Corner Point GT
DoG Blob Point DG

Fast-Hessian Blob Point FH
CenSurE Blob Point CS
MSER Blob Point MS
FAST Blob, corner Point FT

BRISK Blob, corner Point BK
ORB Blob, corner Point OB
LSD Blob Line Segment LS

Table 3: Feature descriptors for experimental evaluation.

Descriptor Datatype # Elements Size [Bytes]
SIFT Float 128 512
SURF Float 64 256
BRIEF Binary 256 32
ORB Binary 256 32

BRISK Binary 512 64
FREAK Binary 512 64

LBD Binary 256 32

estimation, we chose the feature-based approach. Key-
points in both frames are detected and matched using a
suitable detector-descriptor combination and pre-filtered
by the NNDR matching strategy. H is then calcu-
lated using the feature-based image alignment estimation
method with RANdom SAmple Consensus (RANSAC)
for outlier rejection. Hereby, we opted for AKAZE [18]
as the detection algorithm since it is unrelated to any of
the evaluation candidates. On the descriptor side, BRISK
was selected.

In evaluating floor properties, the planar condition is
given. Unfortunately, the planar surface assumption in
the other image sequences is not satisfied since many
objects are visible. Thus, the transformation is not
absolutely correct from the mathematical perspective.
Nevertheless, in the case of our selected frame rate and
relatively small movements between images, the homog-
raphy relation can be approximately used as the base of
evaluation. We performed a visual examination to verify
the approximation, where the resulted H was considered
sufficient for our analysis.

4.2.3. Hardware and Software Implementation

The calculation of the study-related experiments is per-
formed by a computer with the hardware specification
listed in Table 1. On the software side, we set up a
benchmarking framework in C++ using OpenCV, which
provides the implementation of all evaluated detectors,
descriptors, and matching algorithms. In the case of
LBD, we utilized a runtime-optimized binary version of
the floating-point descriptor. Since the performance of
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Figure 3: Pre-evaluation of repeatability as a function of overlap error threshold and region size.

those algorithms is sensitive to parameter tuning, we use
standard OpenCV parameters for each feature extractor
to preserve neutrality.

Tables 2 and 3 provide an overview of the participat-
ing feature detection and description algorithms. The
matching process is realized with the brute-force matcher
since it always provides the best possible matching by
comparing descriptions of features in the first set with all
available descriptors in the second frame.

4.3. Pre-Evaluation of Tuning Parameters

Before conducting the actual study, it is worth discussing
the influence of two tuning parameters, which might
significantly impact the study’s validity. By the nature
of our performance metrics, they are closely related to
the size of the allowed overlap error εO . Regions with
a sizable surface area have a better chance of scoring a
higher overlap value, which automatically improves the
correspondence, repeatability, and matching scores. On
this account, the comparison between feature detectors
only makes sense if we select a common region size,
as all of the considered detectors would produce differ-
ent sizes of meaningful areas around detected features.
To choose suitable values for overlap error and region
size, we evaluated their relationship to repeatability on
datasets containing isolated key elements.

At first, we target the relationship between repeatability
and region size by retaining a constant εO since plenty of
reference values can be found in the literature. In [1] the
value was set to 40 %. However, we further decreased the
maximum acceptable overlap error to 30% in compliance
with our accuracy requirement. In Figure 3a-b, the results
are exemplary plotted for the stand-alone analysis of the
SPU and lander. As expected, repeatability increases
in parallel to the expansion of region size. Except for
FAST and DoG, the slopes of all detectors roughly show
a comparable characteristic. They are more sensitive to
smaller meaningful regions, where only a below-average
performance was achieved. Consequently, we set the
region diameter for the upcoming detector benchmark
preliminarily to 5 pixels based on the charts. In the case
of line segment features, a rectangular line support region
is created with the same amount of pixels in its width.

To solidify our proposed selection of both tuning param-
eters, the sensitivity of the selected pairing is analyzed
by calculating the relation between repeatability and εO .
The diameter of the region is kept constant at 5 pixels,
and the results are again exemplarily plotted in Figure 3c-
d. It is mention-worthy that the BRISK detector is the
most sensitive one in our configuration, while the curves
of other ones are considerably moderate. Especially
for smaller error margins, BRISK shows a more intense
performance degradation than all other detectors. In
summary, our demand of reaching a minimum of 70 %
overlap between two regions is reasonable and will be
used for the upcoming benchmark.

4.4. Feature Detector Benchmark

Within the detector benchmark, every detection algorithm
has to be paired with a descriptor for the calculation of
the matching score. To provide a neutral evaluation base,
we selected FREAK since it is an independent descriptor
without native detector pairing. By this means, possible
pairing-based synergy effects are minimized. For the
description of line segments, we utilized LBD. Table 4
shows the average repeatability and matching score of all
participating feature detectors.

Starting with the analysis of stand-alone objects, it is
to say that the findings from both environmental set-
tings coincide with each other. ORB achieved the best
performance for repeatability, while the remaining de-
tectors are similar by the means of their robustness, as
their repeatability scores are in a considerably narrow
spectrum. Within the ranking, DoG and LSD produced
the worst results, even though the examined objects are
full of straight edges and, therefore, line representatives,
especially in the latter case. Conversely, the matching
scores have a more varying progression. Under the given
circumstances, regions of interest selected by modern
blob and traditional corner detectors produced the most
promising matching scores. LSD, as the only detector
that is not focusing on point features, also reached a
ranking in the upper third. The next stand-alone element
to be analyzed consists of laboratory-specific flooring.
Starting with the motion-blur-free case in datasets 3 and
5, Fast-Hessian and GFTT achieved the best repeatability
and matching score. On the other side, the evaluation



Table 4: Results of the detector benchmark averaged over the all image pairs and associated transformations (median).
The benchmark suite contains 22 datasets (D.) within 13 different sceneries (S.). An overview of the abbreviations assigned
to the detectors is given in Table 2.

# S. Environm. # D. Repeatability Matching Score
GF DG FH CS MS FT BK OB LS GF DG FH CS MS FT BK OB LS

Su
rf

A
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et
ar

y
E

xp
lo
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tio

n

1 SPU 1 83 69 82 80 82 78 81 86 74 70 50 68 75 22 62 51 38 65
2 Lander 2 82 71 82 80 85 75 83 91 71 75 56 71 76 20 64 60 46 65

3 Floor transl.
3 84 78 91 0 0 76 78 83 75 81 60 83 0 0 70 60 50 67
4 70 80 91 0 0 55 0 87 74 63 59 72 0 0 49 0 53 68

4 Floor rotat.
5 82 78 91 0 0 73 76 82 75 80 59 82 0 0 66 58 45 66
6 74 79 91 0 0 60 0 83 81 69 56 74 0 0 52 0 45 73

5 Scenario 1
7 84 74 85 85 84 77 84 88 74 79 57 76 82 41 68 61 49 66
8 82 72 83 82 82 74 82 86 72 73 57 71 78 24 62 56 42 61

6 Scenario 2
9 83 72 86 85 86 75 83 89 73 76 57 77 81 26 65 61 47 66

10 79 73 86 83 84 72 82 86 72 68 57 73 78 26 61 58 43 64

7 Scenario 3
11 84 74 86 87 83 78 84 89 75 80 59 78 84 30 70 63 50 68
12 78 69 81 80 75 72 81 85 61 65 57 68 76 25 57 55 39 52

SM
iL

E
–

U
rb

an
H

ou
si

ng

8 Kitchen 13 84 71 83 84 82 76 84 88 81 76 57 72 81 29 65 60 45 71
9 Living room 14 80 73 84 84 79 75 81 86 78 67 58 72 87 25 61 59 43 65

10 Floor transl.
15 80 64 0 0 0 75 77 80 0 78 41 0 0 0 70 59 46 0
16 54 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0

11 Floor rotat.
17 81 64 0 0 0 77 77 79 0 79 41 0 0 0 72 61 41 0
18 63 0 0 0 0 0 0 0 0 58 0 0 0 0 0 0 0 0

12 Scenario 1
19 78 73 83 82 81 70 82 86 77 64 58 71 86 28 58 59 42 65
20 76 70 80 79 76 68 79 81 74 57 53 64 76 22 52 50 35 58

13 Scenario 2
21 80 74 85 84 81 72 83 87 78 68 60 73 80 29 61 62 45 68
22 73 69 78 79 72 66 78 78 72 52 53 62 66 22 48 53 33 56

shows that the number of correspondence detected by
MSER and CenSurE is constantly deficient. Since mo-
tion blur is also a common issue within our anticipated
hardware setup, we examined the detectors’ tolerance by
applying this kind of disturbance on top of the already
analyzed sceneries. In the planetary exploration case, a
general drop in the number of detected correspondences
can be observed. Nevertheless, GFTT and LSD can still
reach a relatively high number of useful features. The
remaining detectors made a dive towards zero but mostly
still managed to detect sufficient features for tracking
purposes, except for BRISK suffering a total loss of
detection capability. The FAST detector also shows a
similar behavior, which puts it down at the bottom of
the repeatability ranking. Apart from the observations
above, the performance ranking is roughly kept in the
same order, where Fast-Hessian and GFTT still achieved
the highest matchability. It is worth mentioning that
LSD showed promising characteristics in dealing with
this kind of disturbance. Although mostly resting in the
middle field, it achieved the lowest matching score drop
among all participants. Following the discoveries and
realizations from the Martian environment, the flooring
in the SMiLE-Laboratory appeared to be even more chal-
lenging for the selected detection algorithms. Unlike in
the previous scenario, Fast-Hessian has more significant
difficulties finding sufficient interesting points, which
eventually results in total loss of tracking. While LSD
was ranked in the upper midfield in the Martian scenario,

it can only sporadically detect a handful of line features.
This is not very surprising since the patterns in this setting
are very homogeneous, resembling the characteristic of a
noisy image. Encountered with motion blur in datasets
20 and 22, the detection capabilities have been degraded
in such a way that GFTT remains the only algorithm that
can provide a mentionable amount of features.

In terms of simulated mission tasks, we observed that
the general characteristics of the performance metrics are
comparable regardless of which scenario is carried out. It
is not a surprise because all of the image sequences would
comprehensively examine the mission surroundings in
our cases. Regarding the matching score, CenSurE out-
standingly achieved the highest score, followed by GFTT
and Fast-Hessian. FAST-related detectors performed at
the same level of performance as LSD and DoG. Re-
markably, the drop of matchability in the event of induced
movement is most significant in the case of ORB. It
can be tolerated by DoG, FAST, and LSD, while all
other detectors follow a similar shape of performance
degradation. Further, the sensitivity concerning motion
blur is not as significant in the isolated inspection of
the floor. Comparing the average values, only small
fluctuations are observable. This implies that the motion
blur sensitivity of the floor is significantly higher than
the effect on other included objects. In most cases, it
is compensated by additional significant objects in the
scene, which feature a more stable behavior.
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Figure 4: Result of the descriptor performance benchmark, illustrated on the example of dataset 11 and 12

4.5. Feature Descriptor Benchmark

After the original image has been simplified into a col-
lection of promising elements, the selection of a suit-
able descriptor is the next decisive factor to ensure the
uniqueness of each key element. In the scope of this
study, we only compare the performances of the six
introduced point descriptors in Table 3. Similar settings
as in the previous feature detection benchmark were used
for the tuning parameters. The error threshold is set
to 30 %, whereas the size of the meaningful region
around a keypoint is not normalized as in the previous
examination. Unlike in the detector analysis, where the
evaluation process is divided into two different parts,
we decided to directly analyze mission-scenario-related
datasets in this part of the study. While multiple detectors
can be utilized in parallel, descriptors, in general, cannot
collaborate with other ones. For this reason, the desired
descriptor has to achieve good performances under any
circumstances. We had to modify the standard valuation
procedure, as it was initially designed for assessing single
image pairs. Therefore, we collected results from each
image pair during the runtime and constructed the ROC
curves by varying the threshold value. The averaging is
achieved by summarizing the individual parameters into
one key figure, thus eliminating the time factor on its way.

In the evaluation process, we noticed that the descrip-
tion performance follows a general trend, regardless of
which scene is chosen. For this reason, we exemplarily
analyze its behavior based on mission scenario 3 in the
planetary exploration setting in the followings. Starting
from the motion-blur-free dataset in Figure 4a-b, the
individual performances of the considered descriptors are
roughly comparable with each other in the Fast-Hessian
case. In the case where GFTT provides the detection
basis for the evaluation, the characteristics of individual
descriptors deviate considerably from each other. Here,
BRIEF and ORB achieved the best results, followed by
BRISK and FREAK in between and the floating-point
descriptors at the end. In general, it is noticeable that
the examined algorithms tend to form groups consisting
of two descriptors each. This is presumably due to the
utilized methodology for the description process. Thus,
as a direct advancement of BRIEF, ORB shows a similar
characteristic to its original. In contrast, BRISK behaves
in the same manner as FREAK, which shares a lot of the-

Figure 5: Average detection time per feature.

Figure 6: Average description time per feature.

oretical commonalities. With the occurrence of motion
blur in Figure 4c-d, the ROC curves are getting flattered
compared to the motion-blur-free case but remain in a
similar shape. In the case of Fast-Hessian, the character-
istics are getting more diffused. The best performances
are tied between BRISK and FREAK, followed by the
BRIEF-related algorithms in the middle and the floating-
point descriptors at the end. All in all, the best results are
achieved either by BRIEF-related algorithms or BRISK
and FREAK, depending on the utilized feature detector.
Surprisingly, SIFT and SURF performed underwhelm-
ingly, as they are ranked among the best description
algorithms under normal circumstances.

4.6. Computation Time

In this section, the feature extraction algorithms are
benchmarked in their computational performance. There-
fore, we iterated through all 22 datasets to provide an
adequate base for the overall computation time. It is
essential to mention that the recorded benchmark values
only account for the core tasks of the detection and
description process. Other associated tasks inside the
feature extraction framework are therefore not included.



Figure 5 displays the statistic distribution of the detection
time per feature for the examined detectors. BRISK
and MSER scored the slowest median detection time
within the considered detectors, while FAST achieved the
best score, followed by ORB and GFTT. Analogously,
Figure 6 portrays the necessary computation time for the
descriptors per feature. As expected, the list is topped
with two binary descriptors, while SIFT is the slowest
algorithm. On the contrary, BRISK and FREAK are at
the lower end of the ranking.

5. CONCLUSION

In this paper, our focus is directed toward assessing
possible applications in the field of multi-modal machine
perception within the environment of Surface Avatar and
SMiLE.

For establishing a localization and navigation framework
in the visual domain, feature-based approaches are the
superior choice, especially on mobile platforms. A
benchmark study was then carried out, in which state-
of-the-art feature extraction algorithms are evaluated
based on real-world datasets from mission-related envi-
ronments. In terms of feature detectors, we recommend
the combination of multiple algorithms since the perfor-
mances of feature extraction methods are highly depen-
dent on the scene’s photometric characteristics. ORB
and Fast-Hessian are the means of choice for general
detection tasks, whereas GFTT, LSD, and CenSurE are
most suitable for handling individual specific situations
in support. On the contrary, feature descriptors are not
designed to collaborate with others, resulting in a fixed
choice for the entire framework. Thus, we recommend
selecting the ORB descriptor, as it provides the best
balance between robustness and computational effort.
Nevertheless, the utilization of a further descriptor would
increase the algorithm’s robustness by establishing re-
dundancy, in case computational resources and storage
capacity are sufficiently available. Therefore, we recom-
mend the utilization of BRISK or FREAK as an addition
since they achieved the best results in the motion-blur-
afflicted cases.
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