
OPTIMAL AUTONOMOUS PATH PLANNING OF A SPACE 6-DOF MANIPULATOR
ARM

Gianantonio Magnani (1), Luca Bascetta (1), Gregorio Pannacci (2), Francesco Cavenago(3),
Alessandro Pilati(3), Andrea Rusconi(3)

(1) Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano,
gianantonio.magnani/luca.bascetta@polimi.it:
(2) Leonardo SpA, via Indipendenza 2, 21018 Sesto Calende (VA), Italy,
gregorio.pannacci@leonardo.com
(3) Leonardo SpA, viale Europa, 20014 Nerviano (MI), Italy
francesco.cavenago/alessandro.pilati/andrea.rusconi@leonardo.com

ABSTRACT

This paper deals with the autonomous path planning of a
6-DoF robotic arm onboard a mobile platform in charge
of picking Mars soil samples and placing them in special
storage on the platform. RRT planners were considered
first, and then their optimal extensions RRT* and
Informed RRT*. Finally, DMI-RRT* based on the
Informed RRT* approach was developed, capable of
obtaining the suitable paths for a hypothetical mission of
gripping an object on the ground and storing it on the
platform, with limited computational effort. Path
execution time is minimized by fully exploiting the
actuators. Moreover, the generated paths respect the
position, speed, and acceleration limits of the joints, and
are free from collisions. The algorithm is currently coded
in Matlab, and intended for offline use only. Nonetheless,
since most of the computing effort is inherent to collision
checking, a more efficient coding of the body 3D
geometries and collision checking algorithm, should
make the algorithm suitable for execution onboard the
robot for real-time path re-planning.

1. INTRODUCTION

The reference scenario of this study is that of a mobile
manipulator, composed of a manipulator arm and a mobile
platform, in charge of picking Mars soil samples and
placing them in special storage on the vehicle, as
envisaged for the ESA Mars Sample Return mission.
Geometric, kinematic, and dynamic figures of a space arm
similar to ESA / Leonardo’s arm Delian [1] are taken as
reference. This arm has 6 degrees of freedom (DoF), is
about one meter long when fully extended, is extremely
lightweight, has very high gear ratios, and moves at a very
low speed.
The problem of finding a path for a 6-DoF arm, from a
start pose 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 to a target one 𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, avoiding self-
collisions and collisions with the environment, and
minimizing an objective function, like the path length or

execution time, while respecting constraints on joint
position, velocity, and acceleration is quite challenging.
Consequently, autonomous planning capabilities are
beneficial even for offline use only, e.g., to plan the
nominal operations on ground.
Several of the approaches to the autonomous path
planning problem proposed in the literature are unusable
because of the tremendous computational effort they
would require for the 6-dimensional problem. Among
them, there is the optimal version, RRT* [2], of the widely
used Rapidly-Exploring-Random-Trees algorithm [3, 4].
Unlike RRT, RRT* allows us to optimize the path by
minimizing a state-dependent cost function, in our case
the path execution time. RRT* computational effort can
be drastically reduced for high-dimensional problems by
adopting the approach of informed planners [5, 6].
Informed RRT* is derived from RRT* and includes small
but effective modifications in the sampling process. It
behaves like RRT* until a first solution is found, after
which it uses heuristics to restrict the region to be sampled
to a subset of the configuration space, a hyper-ellipse,
which contains the optimal searched path with a high
probability.
Following the Informed RRT* approach, we have
implemented DMI-RRT*, an algorithm that turns out to
be able to find a viable solution to our 6-dimension
planning problem with a sensible computational effort.
The path search is performed in the joint space, and it is
based on the kinematic and 3D geometric model of the
arm and of the mobile platform. The minimized cost
function is an estimate of the path execution time,
computed as the sum of approximate estimations of the
times that the manipulator arm needs to travel across each
segment (edge) of the current path, considering the
velocity limits (i.e., nominal velocities) of the single
joints, and the space they have to travel.
The algorithm has been validated through numerical
simulation considering a realistic operational scenario,
which includes sample pick-up and storage in the mobile
platform. The algorithm is capable of providing viable
paths with limited computational effort.
This paper is organized as follows. In Section 2 the

reference arm kinematics is described, and the 3D model
of the arm and the mobile platform is given. Three
reference poses of the arm are introduced. In Section 3 the
problem of autonomous path planning is posed, and three
algorithms considered for its solution are described.
Section 4 deals with the trajectory generation, also
referred to as time parameterization, where the travel time
is associated with the path to creating a trajectory,
considering joint velocity and acceleration limits. Section
5 compares the different algorithms with respect to the
quality of the path obtained and the computational effort
required. In section 6, the main conclusions are drawn.

2. REFERENCE ARM MODELING

A sketch of the reference arm is shown in Fig. 1

Figure 1. Reference arm schematic

representation

The arm kinematics is given in Tab. 1

Joint Type a (mm) d (mm) α (deg) θ (deg)
1 Revolute 0 190 90

2 Revolute 536 -46.60 0

3 Revolute 0 55.90 -90

4 Revolute 0 435.50 90

5 Revolute 0 -82.80 -90

6 Revolute 0 179.35 0

Table 1. Denavit-Hartenberg parameters

Tab. 2 gives the joint limits and shows the outstanding
gearbox reduction ratios. The nominal velocity of joint
motors is 200 rad/s, while the nominal (maximum)
acceleration is 7840 rad/𝑠𝑠2.

Joint Min (deg) Max (deg) Reduction Ratio

1 -170 170 44340
2 10 350 15700
3 -80 260 44340
4 10 350 27480
5 -350 -10 27480
6 -170 170 27480

Table 2. Joint position limits and gear ratios

A 3D-graphic model of the arm, the mobile platform
carrying it, and of ground is needed for collision check
and visualization of the planned trajectories. To restrain

the calculation times, the vehicle and its wheels were
approximated with boxes, as shown in Figures 2, 3, 4
which define three reference poses of the arm, namely
Unstowage, SampleStorage, and Idle. The results of the
autonomous planning of the paths between these poses
will be illustrated in Section 5

Figure 2. Unstowage pose

Figure 3. SampleStorage pose

Figure 4. Idle pose

3. THE AUTONOMOUS PATH PLANNING
ALGORITHM

Autonomous planning is performed in the joint space,
where the workspace limits are defined, as well as the
joint velocity limits. This choice also avoids possible
difficulties with inverse kinematics.
Since the robot shall operate in a poorly structured and
variable environment, single query sample-based planners
were considered, starting from the widely used Rapidly-
Exploring-Random-Trees algorithm.

RRT is widely used for its simplicity and ability to search
efficiently non-convex and high-dimensional spaces. It
builds a tree-like structure, rooted in the initial joint
position set and directed towards the final one until a path
from the source to the goal is obtained. The tree is built
iteratively, adding at each iteration a new sample, namely
a randomly selected, collision-free joint position set. The
added sample is a new vertex of the tree, while edges are
the segments connecting two consecutive vertices.

RRT allows to obtain the solution with acceptable
computational effort even for problems with a space
search of dimension 6, such as the path planning of the 6
DoF reference arm, but it does not allow to introduce
optimality criteria on the searched path, such as
minimizing the path length, or the travel time or the
energy used by the actuators. To this end, RRT*
algorithms can be used.

RRT* algorithms are based on RRTs, but are able to
obtain probabilistically optimal paths as the number of
samples approaches infinity. Unfortunately, the
computational effort required by RRT* for our
application, where it was required to minimize the
execution time of the operations, and therefore the travel
time between the initial and final joint position of each
path, proved to be practically unacceptable.

Informed RRT* planners are a further evolution of RRT
and RRT* planners which may drastically reduce the
computational effort for high dimensional search spaces,
as they use heuristics to focus the search of new samples
on a restricted subset of the joint space which contains the
optimal solution with a high probability.
Informed RRT* planners behave like RRT*s until a first
solution is found, then they search for an improved
solution only sampling the obstacle free part of a region
shaped as a hyper-ellipsoid with focal points on 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and
𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 with a transverse diameter of 𝑐𝑐𝑖𝑖, and conjugate
diameter of �𝑐𝑐𝑖𝑖2 − 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚2 , 𝑐𝑐𝑖𝑖 being the cost (length) of the
current path, and 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 is the theoretical minimum cost
(length or Euclidean distance between 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔).

Following the Informed RRT* approach, we have
implemented DMI-RRT*, an algorithm that proved able

to find a viable solution to our reference planning
problem, with a sensible computational effort.
DMI-RRT* is characterized by the following
specifications:

• The path search is performed in the joint space, and

it is based on the kinematic and 3D geometric model
of the arm, and on a 3D “box model” of the mobile
platform suitable for collision-checking;

• The distance between two joint position sets 𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗

(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗 ∈ ℝ𝟔𝟔) is a weighted Euclidean distance
𝑑𝑑�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = �𝑤𝑤𝑇𝑇�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗��2

𝑤𝑤 ∈ ℝ𝟔𝟔 being a weighting vector whose elements
𝑤𝑤𝑖𝑖 = 𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑣𝑣𝑛𝑛𝑛𝑛
 depend on the i-th joint nominal velocity

𝑣𝑣𝑛𝑛𝑛𝑛 compared to the maximum nominal joint velocity
𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = max

1≤𝑖𝑖≤6
𝑣𝑣𝑛𝑛𝑛𝑛

• The cost function to minimize is an estimate of the

path execution time, computed as the sum of
approximate estimations of the times that the
manipulator arm needs to travel across each segment
(edge) of the current path. The travel time (cost)
𝑐𝑐𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1) of segment i, from joint position set 𝑥𝑥𝑖𝑖 to
𝑥𝑥𝑖𝑖+1 (intermediate joint positions between 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
and 𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) is defined as:

𝑐𝑐𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1) = max (𝑡𝑡𝑡𝑡)

𝑡𝑡𝑡𝑡 ∈ ℝ𝟔𝟔 being a vector whose 6 elements 𝑡𝑡𝑡𝑡𝑘𝑘 =
�𝑥𝑥𝑖𝑖,𝑘𝑘−𝑥𝑥𝑖𝑖+1,𝑘𝑘

𝑉𝑉𝑘𝑘
� are the times that joint k spends to move

from position 𝑥𝑥𝑖𝑖,𝑘𝑘 to position 𝑥𝑥𝑖𝑖+1,𝑘𝑘 at its nominal
velocity 𝑣𝑣𝑛𝑛𝑛𝑛. The execution time therefore considers
the velocity limits (i.e., nominal velocities) of the
single joints and the space they have to travel. It is
assumed that all six joints move synchronously in
each segment.

We have coded in Matlab the RRT, RRT*, and Informed
RRT* algorithms using powerful functions of the
Robotics System Toolbox to assess their behavior and
performance, and the relevant computational effort.

Inputs of the algorithm are the initial and final joint
positions 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, and few tuning parameters,
while the output is a structure Sol containing:
- the tree 𝑻𝑻 = (𝑽𝑽,𝑬𝑬), defined by its vertices 𝑽𝑽 and edges
𝑬𝑬, iteratively generated by the algorithm;
- 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠 , a set of n vertices, named waypoints, 𝑉𝑉𝑖𝑖 , 𝑖𝑖 =
1, … ,𝑛𝑛, being 𝑉𝑉0 ∶= 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑉𝑉𝑛𝑛 close enough to 𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ,
which composes the solution path. The waypoints are
sequentially connected by n-1 edges 𝐸𝐸𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛 − 1;
- 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 , cost of the solution.

At each iteration a sample joint position set free from
collisions is extracted from the informed reduced region.
Since it is computationally inefficient to sample points in
6D and to check whether they are or not inside the ellipse
being the joint space too wide, joint positions are initially
sampled inside a 6-D unitary sphere and then, through a
proper transformation, transferred into the hyper-ellipse
shape.

The sample (𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛) is then connected to the node of the
current tree, among those within a given distance from it
(neighbor nodes), that gives the cheapest path from 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
and 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 (best parent node), provided that the relevant
edge is free from collisions.

The tree may be rewired if there is a path to any neighbor
node passing through 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 that is cheaper than the current
path; if a path with this characteristic exists the relevant
node is connected to 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛.

Finally, the cheapest path given the current tree is found,
and the outputs 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 are computed.

The iterative process stops when the difference of cost
between two consecutive iterations falls under a given
tolerance, or the eccentricity of the ellipse exceeds a given
tolerance.

4. TRAJECTORY GENERATION

Once a path is derived it is necessary to associate time
with it, to create a trajectory. Joint velocity and
acceleration limits must be considered.

Consistently with the goal of completing the path in
minimum time, we try to exploit the full potential of the
actuators on each edge of the path. We then look for the
joint that, moving to its nominal speed and acceleration,
will take longer to complete its path. The time taken by
this joint is taken as the edge execution time, and it is
computed according to the velocity profile in Fig. 5,
referred to edge i and joint k: 𝑞̇𝑞𝐶𝐶𝑘𝑘, 𝑞̈𝑞𝐶𝐶𝑘𝑘 are joint k nominal
velocity and acceleration (positive values), 𝑞̇𝑞𝑖𝑖𝑘𝑘is joint k
actual velocity in edge 𝐸𝐸𝑖𝑖, 𝑡𝑡𝐶𝐶𝐶𝐶𝑘𝑘 and 𝑡𝑡𝑓𝑓𝑓𝑓𝑘𝑘 are respectively the
duration of the acceleration phase and the time to run
across edge 𝐸𝐸𝑖𝑖 by joint k running at its own nominal
velocity and acceleration.

Denoting the actual rotation of joint k across edge 𝐸𝐸𝑖𝑖 as:
∆𝑞𝑞𝑖𝑖𝑘𝑘 = 𝑞𝑞𝑖𝑖+1𝑘𝑘 − 𝑞𝑞𝑖𝑖𝑘𝑘, 𝑞𝑞𝑖𝑖𝑘𝑘 being the position of joint k at
waypoint 𝑉𝑉𝑖𝑖, assuming for simplicity ∆𝑞𝑞𝑖𝑖𝑘𝑘 > 1

2
𝑞̈𝑞𝐶𝐶𝑘𝑘𝑡𝑡𝐶𝐶𝐶𝐶𝑘𝑘

2,
from the velocity profile we get:

𝑡𝑡𝐶𝐶𝐶𝐶𝑘𝑘 = 𝑞̇𝑞𝐶𝐶
𝑘𝑘−𝑞̇𝑞𝑖𝑖−1

𝑘𝑘

𝑞̈𝑞𝐶𝐶
𝑘𝑘 ;

and

𝑡𝑡𝑓𝑓𝑓𝑓𝑘𝑘 =
∆𝑞𝑞𝑖𝑖

𝑘𝑘+�𝑞̇𝑞𝐶𝐶
𝑘𝑘−𝑞̇𝑞𝑖𝑖−1

𝑘𝑘 �𝑡𝑡𝐶𝐶𝐶𝐶
𝑘𝑘 −12𝑞̈𝑞𝐶𝐶

𝑘𝑘𝑡𝑡𝐶𝐶𝐶𝐶
𝑘𝑘 2

𝑞̇𝑞𝐶𝐶
𝑘𝑘 ;

The actual time to run across edge 𝐸𝐸𝑖𝑖 for all joints is then
𝑇𝑇𝑖𝑖 = max

𝑘𝑘=1,6
 𝑡𝑡𝑓𝑓𝑓𝑓𝑘𝑘 , and the acceleration time 𝑇𝑇𝐶𝐶𝐶𝐶 is that of the

joint of the maximum 𝑡𝑡𝑓𝑓𝑓𝑓𝑘𝑘 . Acceleration and velocity of
each joint, but the one moving at nominal figures, are
scaled so that all joints move synchronously and reach
waypoint 𝑉𝑉𝑖𝑖+1 at the same time instant. In this way, the
edge is covered in minimum time, the motion is more
regular and the power picks required by the power supply
and drivers are minimized. The passage through waypoint
𝑉𝑉𝑖𝑖+1 is guaranteed, even if the absence of collisions during
the whole movement cannot be guaranteed. For this
purpose, further collision checks would need, unless
edges are short enough and/or suitable safety margins are
taken.

The last edge has to be treated a special way as the
constraint of zero final speed is added to that of the space
to be covered.

Figure 5 Velocity profile to run across edge 𝐸𝐸𝑖𝑖 from
waypoint 𝑉𝑉𝑖𝑖 to waypoint 𝑉𝑉𝑖𝑖+1

5. RESULTS

DMI-RRT* is compared to RRT and RRT* to plan paths
of a 2-DoF manipulator consisting of joints and links 1
and 2 of the reference arm, because this allows the easy
presentation of joint space paths, and because RRT* needs
too much computational time for the 6-DoF arm.

As illustrative examples, the result of planning the
following two paths are shown:

• Unstowage-SampleStorage, representing a path with

an obstacle in between. The trees built by the three
algorithms and the relevant solution paths are shown
in figures 6, 7, 8 and Tab. 3, comparing the solution
paths in terms of quality (cost) and computational
effort, underlines the advantages of using informed
sampling; DMI-RRT* clearly outperforms the other
planners both in terms of computational and solution

cost.

• Unstowage-Idle, representing a free from obstacles
path. The results are shown in figures 9, 10, 11 and in
Tab. 4.

Figure 6 Path Unstowage–SampleStorage obtained by

RRT planner

Figure 7. Path Unstowage– SampleStorage obtained by

RRT* planner

Figure 8. Path Unstowage–SampleStorage obtained by

DMI-RRT* planner

Algorithm Sol. Cost [s] Comp. Cost [s]
RRT 230 317

RRT* 60 1538
DMI-RRT* 55 300

Table 3. Comparison in terms of cost (Unstowage-

SampleStorage path)

Figure 9 Path Unstowage–Idle obtained by RRT planner

Figure 10 Path Unstowage–Idle obtained by RRT*

planner

Figure 11 Path Unstowage–Idle obtained by DMI-RRT*

planner

Algorithm Sol. Cost [s] Comp. Cost [s]

RRT 147 67
RRT* 113 1280

DMI-RRT* 109 10

Table 4. Comparison in terms of cost (Unstowage-Idle
path)

Further tests showed that DMI-RRT* was able to find the
Unstowage-SampleStorage path of the 6-DoF arm almost
at the same computational effort spent by RRT* to find
the same path of the 2-DoF arm.

The paths computed by DMI-RRT* for the complete
mission of picking a soil sample and placing it in the
storage on the platform is sketched in Figure 12.

Figure 12 Paths of the complete mission of the 6DoF

arm

6. CONCLUSIONS

In conclusion, a viable solution to the autonomous path
planning of a 6 DoF manipulator arm operating in an
unstructured and dynamic environment has been found,
which respects and fully exploits the arm actuator’s
velocity and acceleration limits.

The solution is based on the idea of Informed RRT*
planners, which are able to find optimal solutions, with a
high probability, with moderate computational effort even
for a 6-dimensional problem. We have coded the DMI-
RRT* algorithm, as well as RRT and RRT* planning
algorithms, in Matlab, using powerful functions of the
Robotics System Toolbox, to assess the relevant
performance and computational effort.

The choice to minimize a practical approximation of the
path execution time, based on the nominal velocity of the

arm joints, is a peculiarity of DMI-RRT*, intended to limit
the time the robot needs to carry out its missions, partly
compensating for its low speed.

The optimal version RRT* of the widely used Rapidly-
Exploring-Random-Trees algorithm proved practically
useless to solve the problem due to the excessive
computational effort required.

On the contrary, DMI-RRT* proved to be able to find all
envisaged paths for the application of collecting objects on
Martian soil with limited and practically acceptable
computational effort. Tests have shown that most of the
computing effort is inherent to collision checking. This
could be dramatically reduced with a more efficient coding
of the body 3D geometries and collision checking
algorithm, which could possibly allow the algorithm to be
run onboard the robotic controller for real-time path re-
planning.

7. REFERENCES

1. A. Rusconi, P. Magnani, S. Michaud, Delian-
dextrous lightweight arm for exploration, ASTRA
2015

2. S. Karaman and E. Frazzoli. Sampling-based
algorithms for optimal motion planning. The
international journal of robotics research,
30(7):846–894, 2011.

3. LaValle, Steven M. (October 1998). "Rapidly-
exploring random trees: A new tool for path
planning" (PDF). Technical Report. Computer
Science Department, Iowa State University (TR 98–
11).

4. LaValle, Steven M.; Kuffner Jr., James J. (2001).
"Randomized Kinodynamic Planning" (PDF). The
International Journal of Robotics Research (IJRR).
20 (5): 378–400. doi:10.1177/02783640122067453.
S2CID 40479452.

5. J. D. Gammell. Informed anytime search for
continuous planning problems. Ph.D. thesis,
University of Toronto (Canada), 2017.

6. J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot.
Informed rrt*: Optimal sampling based path
planning focused via direct sampling of an
admissible ellipsoidal heuristic, 2014 IEEE/RSJ
International Conference on Intelligent Robots and
Systems, pages 2997–3004. IEEE, 2014.

	Optimal Autonomous Path Planning of a Space 6-DOF Manipulator arm

