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ABSTRACT

Identifying robotic traverses on the surface of other ce-
lestial bodies is essential to assess the capabilities of the
required system at the mission planning stage. With in-
creasingly diverse robotic systems designs for space, in-
cluding wheeled, walking, and multimodal systems, a
wider range of behaviors concerning electrical energy
consumption and failure risk are becoming available.
Thus, it becomes necessary to define path optimality
for the two parameters individually, beyond a traditional
minimization of path length. This paper proposes a path
planning algorithm that finds optimal global paths on the
lunar surface for robotic energy consumption and risk,
where the user can define the energy and risk minimiza-
tion functions and their relative importance. Based on a
custom A* implementation, the proposed algorithm suc-
cessfully minimizes the energy consumption and path
risk in various scenarios. Exemplary, a cost function for
the walking robot ANYmal was generated in simulation
and applied to our planner. The results show that differ-
ent optimized global paths were generated depending on
the user’s energy/risk trade-off.

1. INTRODUCTION

The past few decades have held a renewed interest in de-
veloping new robotic missions to the Moon. Robotic ex-
ploration of the surface of the Moon holds a large scien-
tific and non-scientific value. The design of these new
lunar surface exploration missions includes the selection
of interest points from which to collect new data. These
interest points may fall in a wide range of terrains that
can be best fit for exploration by robots with different lo-
comotion principles. In this context, especially the use
of legged systems is of high relevance, as those systems
have advanced rapidly over the last decade and show
promising performance on a large variety of unstructured,
terrestrial terrains [1]. Thus, it might only be a matter of
time until we see such systems in space [2].

An example for a highly geologically diverse region of
the Moon is the Aristarchus plateau, making it a potential
destination for upcoming lunar surface robotic missions
[3, 4, 5]. The exploration of the Aristarchus crater, found

within the plateau, would encounter a large terrain diver-
sity that might be most effectively and safely tackled by
a legged robot (e.g. ETH Zurich’s SpaceBok [6, 7] or
ANYmal [8]), steep walls on sinuous rilles might be best
explored by a climbing robot (e.g. NASA’s LEMUR 3
[9]), and flatter plateau regions might benefit most from
a wheel-legged robot (e.g. NASA’s ATHLETE [10] or
ETH Zurich’s ANYmal-on-wheels [11]).

There is currently a lack of global planners that find opti-
mal paths between interest points for different types of
robots exploring lunar terrain. Factors such as energy
consumption and path safety highly depend on traversed
terrain characteristics [12]. Thus, a commonly avail-
able algorithm to minimize the total distance traveled by
a robot may fail to account for the limitations of each
robotic operation. Our contribution is an optimal path
planning algorithm that optimizes over energy consump-
tion and risk functions particular to different robot de-
signs and locomotion modes. The algorithm allows the
user to define these functions, as well as their relative im-
portance in the path optimization problem. Moreover, the
algorithm is implemented in an online platform that can
easily be accessed during the planning stage of future lu-
nar missions.

We start this paper with with introducing the path plan-
ning methodology, including the A* implementation as
well as cost and heuristic function definition in Sec. 2,
followed by our software implementation in Sec. 3, re-
sults and discussion in Sec. 5, and conclusion in Sec. 5.

2. PATH PLANNING METHODOLOGY

The implemented algorithm is based on the A* planner
[13]. A* is a heuristic best-first search algorithm that
finds the lowest-cost path on a weighted graph. At each
step of the algorithm, A* visits the new node x that min-
imizes

f(x) = g(x) + h(x) (1)

where g(x) is the cost of reaching the new node x from
the start node, and h(x) is a heuristic estimate of the cost
of the cheapest path from the new node x to the target
node.
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The algorithm stops when the new visited node matches
the target node.

The heuristic function h is required to be admissible,
meaning that it never overestimates the real cost of reach-
ing the target node. Furthermore, if the heuristic function
h is consistent, meaning that, for all nodes x and for each
neighbor node x′ of x it satisfies

h(x′) ≤ c(x, x′) + h(x) (2)

where c(x, x′) is the cost of reaching node x′ from node
x, then A* is guaranteed to return the least-cost path on
the graph.

2.1. Cost Function

In the proposed A* algorithm implementation, the cost
function g, evaluated on a path P = {x0, x1, . . . , xn =
x} ending at node x, is defined as

g(x) = α · EP (x) + (1− α) ·RP (x) (3)

where EP (x) and RP (x) are the energy efficiency and
failure risk faced by reaching node x on the path, and
α ∈ [0, 1] is a tunable, user-defined weight. This cost
function is calculated by summing the cost of each edge
along the path, as

g(x) =

n∑
i=1

c(xi−1, xi). (4)

Let s(xi, xj) be the directional slope from xi to xj . Let
r(xj) be the rock abundance at xj , and let d(xi, xj) be
the euclidean distance from xi to xj . Then, the cost of
the edge from xi to xj is

c(xi, xj) = α · E (s(xi, xj), r(xj)) · d(xi, xj)

+ (1− α) ·R (s(xi, xj), r(xj)) · d(xi, xj)
(5)

where E(s, r) and R(s, r) are the energy efficiency and
risk cost of a robot per unit distance on a slope of value
s and a rock abundance of value r. It follows easily that
the quantities in equation (3) correspond to

EP (x) =
∑n

i=1 E (s(xi−1, xi), r(xi)) · d(xi−1, xi),

RP (x) =
∑n

i=1 R (s(xi−1, xi), r(xi)) · d(xi−1, xi).
(6)

The quantities E(s, r) and R(s, r) have a high relevance
in this proposed algorithm implementation. They define
the relationship between lunar terrain and robotic perfor-
mance and thus, are responsible for optimal paths chang-
ing for varying robotic designs or locomotion modes. We
use an example set of these functions, corresponding to
the quadrupedal robot ANYmal [8] (specifically, ANY-
mal C). These functions are defined following evalua-
tion data of the robot on simulated lunar terrain, using
a reinforcement-learning-based locomotion controller.

Figure 1: Bounding gait of ANYmal C, on which the ex-
ample implemented cost functions are based on.

Figure 2: Second order polynomial surface fitted on the
average torque squared data of Anymal C, traversing 8m
of a terrain with given slope and rock abundance.

To obtain these example functions, we trained a policy
within the physics simulator Isaac Gym [14], using the
approach presented in [15]. We simulated thousands of
robots in parallel in lunar gravity, on a lunar terrain cur-
riculum, consisting of slopes and boulder fields of vary-
ing difficulty. Besides velocity reference commands and
proprioceptive measurements, we assume that the robot
has a detailed elevation map of its surroundings available,
thus also providing elevation points around the robot
as observations. Following an end-to-end learning ap-
proach, we define the actions as joint position references,
giving the agent the freedom to adopt any type of gait.
The resulting gait, for which we characterize the energy
consumption and risk functions, is a dynamic bounding
gait with a long flight phase depicted in Figure 1. This
gait is able to overcome slopes of up to about 40◦ and
obstacles as high as 0.5 m. The energy efficiency and re-
liability are then evaluated at a fixed velocity of 0.8 m/s,
traversing 8 m on different slopes and boulder fields. The
robot’s energy efficiency cost is calculated based on the
average torque squared, approximating the actual power
consumption. The evaluation data is fitted with a second
order polynomial as in equation (7), using least squares.
The resulting fit of the surface is shown in Figure 2, while
the fitted coefficients are presented in Table 1.

E(s, r) = p1 + p2s+ p3r + p4s
2 + p5sr + p6r

2. (7)

To prevent the robot from venturing into any terrain we
deem too dangerous and unreliable, limits on both slope
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and rock abundance are introduced. Rock abundance is
measured via the Cumulative Fractional Area (CFA) as
defined in [16]. The limits for negative and positive slope
smin and smax are set to ± 30 degrees, while the max-
imum rock abundance is considered to be at 0.3. This
leads to our final efficiency cost of

E(s, r) =


p1 + p2s+ p3r + p4s

2 + p5sr + p6r
2 ,

if smin ≤ s ≤ smax

∞ ,

else.
(8)

In turn, the design of the risk cost is based on the crash
rate, where a crash is defined as a contact of the robot’s
base with the environment or itself. It is set up in a similar
fashion, fitting the second order polynomial surface from
equation (7) to performance data of ANYmal C. In addi-
tion, we bound the minimal value at zero, as no negative
crash rate is possible. While the standard least squares
method was used for the efficiency cost, a weighted ap-
proach was taken in this case. To maintain the right trend
that the minimal risk at a fixed slope is at zero rock abun-
dance, we assign the following weighting to each data
point:

σ(s, r) =

(
1

10
(|s|+ 100r)

)2

+ 0.1. (9)

The weighted least squares approach minimizes
ndata∑

i

(
ri

σ(si, ri)

)2

, (10)

where we sum over all data points ndata, weighting the
residual fitting error ri of each point with the assigned σ.
The resulting surface is shown in Figure 3. The fit sets a
higher importance on commonly found, low rock abun-
dance values and slopes around zero. As a consequence,
the fitting errors close to smin, smax and rmax are high.
Taking a more complicated function would prevent such
errors, but since these combinations of terrain properties
are rarely encountered, our choice only leads to a minimal
error. The coefficients of the surfaces are presented in Ta-
ble 1. The risk cost is then calculated based on the fitted
function for the crash rate crash(s, r). We first calcu-
late the crash rate on the relevant path section of length d
based on crash(s, r), as the latter is the value for travers-
ing a distance of 8m. We get the final cost by scaling it
with the maximum possible efficiency cost and the crash
rate at ( 12smax,

1
2rmax). As such, the risk cost is given

by:

R(s, r) =E(smax, rmax)

· 1− (1− crash(s, r))
d
8

1− (1− crash( 12smax,
1
2rmax))

d
8

.
(11)

The coefficients are specific to a robotic design and lo-
comotion mode and by changing the values of the cost
function on each node on the terrain, they change the op-
timality of different possible paths from start to goal.

Figure 3: Second order polynomial surface fitting the
crash rate with a weighted least squares approach,
weighting slopes and boulder fields around zero higher.

Table 1: Resulting coefficients from fitting the torque
squared and crash rate with a second order polynomial
surface.

p1 p2 p3 p4 p5 p6

Energy 803 10.5 70.3 73.9 -1.42 1770

Risk -0.0288 0.00531 0.319 0.00314 -0.0230 10.8

2.2. Heuristic Function

Let xt be the target node of a given path planning prob-
lem, and let d(x, xt) be the euclidean distance between
node x and node xt. The heuristic function implemented
in the A* algorithm is

h(x) = α · E(sh, rh) · d(x, xt) (12)

where α and E are the importance weight and efficiency
cost, as defined in Section 2.1. We take the efficiency cost
at its minimum at (sh.rh), found with Newton’s method
to be sh = −7.158 degrees and rh = 0 in our case. In-
tuitively, it can be seen that this choice of heuristic func-
tion never overestimates the cost g(x) defined in equation
(3). In particular, E(s, r) ≥ E(sh, rh) and R(s, r) ≥ 0,
meaning that the cost of a path starting at x and ending at
xt, {x0 = x, x1, . . . , xn = xt}, can be lower bounded as

c(x, xt) = α ·
n∑

i=1

E (s(xi−1, xi), r(xi)) · d(xi−1, xi)

+ (1− α) ·
n∑

i=1

R (s(xi−1, xi), r(xi)) · d(xi−1, xi)

≥ α · E(sh, rh) ·
n∑

i=1

d(xi−1, xi) + 0

≥ α · E(sh, rh) · d(x, xt)
(13)

where the last inequality uses the fact that since all dis-
tances are calculated on a two-dimensional plane, the dis-
tance traveled by any path from x to xt can only be larger
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or equal to the straight line connecting them. The imple-
mented heuristic is thus admissible.

This choice of heuristic can, furthermore, be shown to be
consistent. Some initial results are

h(x′) = α · E(sh, rh) · d(x′, xt)

c(x′, x) ≥ α · E(sh, rh) · d(x′, x)

h(x) = α · E(sh, rh) · d(x, xt)

(14)

and, from the triangle inequality, we have

d(x′, xt) ≤ d(x′, x) + d(x, xt). (15)

Equation (15) can be multiplied on both sides by the con-
stant non-negative value α · E(sh, rh), giving

α·E(sh, rh) · d(x′, xt)

≤ α · E(sh, rh) · d(x′, x) + α · E(sh, rh) · d(x, xt)
(16)

which, using the initial results from equation (14), gives

h(x′) ≤ α ·E(sh, rh) ·d(x′, x)+h(x) ≤ c(x′, x)+h(x).
(17)

Since the heuristic is consistent, the A* implementation
is guaranteed to return the optimal path on the searched
graph, for the specified cost function.

3. SOFTWARE IMPLEMENTATION

The proposed algorithm is implemented in web applica-
tion, with the intention of making it an accessible tool
where users can obtain and assess optimal paths on lunar
terrain, customized for their specific robot. The platform
that runs the planner contains different stages for terrain
preprocessing, online user interaction, and path planning.
Through the online user interface, the user can set param-
eter values for their robot’s cost function, and choose the
terrain patch to plan a path on. Moreover, paths can be
planned with multiple stops along the way.

Patches of lunar terrain data are obtained from Lunar Re-
conaissance Orbiter Camera (LROC) [17] data and down-
loaded from QuickMap 1. The downloaded maps have a
resolution of 256 by 256 px and they are processed in
Python by the GDAL library [18]. From each terrain
patch, we obtain the resolution, height, slope and rock
abundance information.

The resolution, height, slope and rock abundance data,
as well as the energy and risk function parameters, their
relative weighting and the start and target point of a path
segment, are given as inputs to the planner backend. The
planner then obtains both the direct and optimal paths be-
tween the input points, together with their height, traveled
distance, directional slope and rock abundance data.

1https://quickmap.lroc.asu.edu

Through the user interface, the user can input their cost
function and path data. The platform returns the optimal
path between the interest points, downloadable as a file,
and shown graphically on height, slope and rock abun-
dance maps of the terrain. It also provides the user with
plots and histograms of the height, directional slope and
rock abundances encountered along the path, for easy as-
sessment of the obtained path by the user.

4. RESULTS AND DISCUSSION

We tested our algorithm for a set of start and target points
around the Aristarchus crater. It successfully minimized
the energy cost and path risk in a variety of scenarios. We
present an example of these results, near the Aristarchus
central peak, a geologically interesting terrain which has
been identified as one of the scientific targets for future
exploration mission by the Constellation program office
[19]. Figure 4 depicts two optimal paths that connect
potential points of interest on either side of the central
peak, showing two different types of approaches. De-
pending on the weighting α, either a safer or a more
energy-efficient path is optimal; taking a detour around
or climbing over the peak.

Table 2: Values given by the A* planner of two optimal
paths, for varying α, around the Aristarchus central peak,
shown in Figure 4.

Distance (m) Crash rate Energy cost (-)

α = 0.3 3197 39% 2750

α = 0.5 1659 52% 1718

The path planner successfully minimizes the energy cost
and path risk in a variety of scenarios. Moreover, chang-
ing the importance weighting, one can plan and select dif-
ferent paths according to the robot’s robustness. In our
case, we can see from the resulting paths in Table 2 and
Figure 4, and from the cost functions in section 2.1, that
additional effort in the robot’s reliability on boulder fields
could greatly cut the mission’s energy consumption and
traveled distance.

5. CONCLUSION

We propose an algorithm that performs path planning that
successfully optimizes energy consumption and path risk.
The robot’s energy consumption and risk as functions of
the traversed terrain characteristics, as well as their rela-
tive importance, are user-customizable. This implies that
the optimal path planner can incorporate different robot
designs and locomotion modes. Planned paths can in-
clude multiple intermediate goals and all segments in a
resulting multiway point path are optimal paths. More-
over, paths can be planned on any lunar terrain patch af-
ter its incorporation into the pre-processing stage and into
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Figure 4: Two optimal paths around the Aristarchus central peak, planned with different importance weighting α, starting
at the circle and targeting the star, together with the direct path between the two points. The paths are depicted on filtered
elevation and rock abundance maps, covering a 3.5 by 3.5 km area.

Figure 5: Height and rock abundance profiles encountered along the two optimal paths and the direct path shown in
Figure 4.

the website framework. Last, the developed web platform
is easy to use and provides the user with path data that are
relevant for a robotic lunar mission’s planning stage. We
believe that tools like the one presented in this work will
become a useful addition in mission planning phase to
quickly iterate on potential robot trajectories.

Some natural continuations of this work might include
advancing the website development to improve the user
experience and open-sourcing the software. They might
also include proposing algorithm modifications for opti-

mizing over gait switches along a path, for robots that al-
low for multimodal locomotion. Gait-switching implies
an additional dimension for the planning problem and the
selection of the most adequate planning method could be
revised accordingly.



6

ACKNOWLEDGEMENTS

The authors thank Heinrich Heinzer for his contribution
to setting up the online platform for this project.

We acknowledge the use of imagery from Lunar
QuickMap (https://quickmap.lroc.asu.edu), a collabora-
tion between NASA, Arizona State University Applied
Coherent Technology Corp.

The project that gave rise to these results received
the support of a fellowship from ”la Caixa” Foun-
dation (ID 100010434). The fellowship code is
LCF/BQ/EU20/11810074.

REFERENCES

[1] Takahiro Miki, Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen,
Vladlen Koltun, and Marco Hutter. Learning robust perceptive
locomotion for quadrupedal robots in the wild. Science Robotics,
7(62):eabk2822, 2022.

[2] Hendrik Kolvenbach. Quadrupedal Robots for Planetary Explo-
ration. PhD thesis, ETH Zurich, Institute of Robotics and Intelli-
gent Systems (IRIS), 2021.

[3] H.J. Moore S.H. Zisk, C.A. Hodges. The Aristarchus-Harbinger
region of the moon: Surface geology and history from recent
remote-sensing observations. The Moon, 17:59–99, 1977.

[4] John F. Mustard, Carle M. Pieters, Peter J. Isaacson, James W.
Head, Sebastien Besse, Roger N. Clark, Rachel L. Klima, Noah E.
Petro, Matthew I. Staid, Jessica M. Sunshine, Cassandra J. Run-
yon, and Stefanie Tompkins. Compositional diversity and geo-
logic insights of the Aristarchus crater from Moon Mineralogy
Mapper data. Journal of Geophysical Research: Planets, 116(E6),
2011.

[5] W Brent Garry and Jacob E Bleacher. Emplacement scenarios
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