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ABSTRACT

In this paper, we consider the scenario of exploring a
planetary surface with a system formed by an Unmanned
Aerial Vehicle (UAV) and an Unmanned Ground Vehi-
cle (UGV). The goal is to reach a set of target points
minimizing the travelling distance. On previous work,
we presented the TERRA algorithm, which was able to
solve this type of problems in an R? Euclidean space.
This time, we explain an extension that allows TERRA
to deal with R? instances, resulting in 3DTERRA, and to
apply our work to exploratory missions. We will describe
the algorithm(s) modifications and test this new version
in new 3D environments, testing how the novel paradigm
affects previous results. The experimental evaluation of
3DTERRA demonstrates that its performance relies on
the battery capacity of the UAVs, the clustering level of
the target points in the exploration area, and the complex-
ity of the terrain features.

Key words: Exploration; Cooperation; Routing; Hetero-
geneous Robots.

1. INTRODUCTION

The state of the art with regard to autonomous or semi-
autonomous vehicles has rapidly progressed in the last
years. Most of the attention received by the media and
the mainstream public is, unsurprisingly, focused on con-
sumer products (such as e.g., UAVs or drones) and ve-
hicles for personal transportation (e.g., TESLA). In the
military and industrial sector, robotics has also made sig-
nificant advances with regard to mobile systems capa-
ble of operating at least semi-autonomously. Specifically,
the mining industry is increasingly investing in more and
more advanced research to enable autonomous operation
under ground, an environment where communication is
notoriously difficult and where positioning, navigation
and timing (PNT) is a crucial challenge. Various recent
research projects have investigated cooperative forma-
tions of multiple, individually operating vehicles. Some
of the advantages of operating a collective (often referred
to as a Swarm) of vehicles, as opposed to a single physi-

cal system, are immediately apparent: in dangerous envi-
ronments, loss of a single unit does not constitute a loss
of the entire system; multiple systems can cover a larger
physical area; distributed systems can offer self-healing
and re-calibration capabilities that single systems lack.

The rapidly growing space industry sector shares many of
the challenges of e.g., under ground mining. While there
may not be anything physically obstructing the commu-
nication, extremely large distances can incur a communi-
cation delay that makes remote controlling a device im-
practical or even impossible. Therefore, device auton-
omy as well as multi-device collaboration are of inter-
est to the stakeholders in this domain. One of the more
recent missions highlighting this was the deployment of
the Mars Helicopter Scout (MHS) along with the Mars
2020 Rover [NAS20], which received widespread media
attention. Space agencies, such as the National Aero-
nautics and Space Administration (NASA) or the Euro-
pean Space Agency (ESA), are defining new cooperation
paradigms aiming to improve the quality and quantity of
the scientific return from their exploration missions. One
of the most studied problems is the area coverage using
multiple Unmanned Ground Vehicles (UGVs) [BMSS05]
or Unmanned Aerial Vehicles (UAVs) [RBTHO2].

Furthermore, one of the most pressing bottlenecks for op-
eration in space as well as on other planets is resource de-
pletion and power consumption. Algorithms optimizing
power consumption and improving operational efficacy
are in high demand as they can extend mission times,
push the boundaries of what a multi-robot system can
possibly achieve and generally make these systems more
versatile and robust once they are deployed.

In previous work [RMRM19, Rop20] we have reported
on a novel path planning algorithm for heterogeneous
multi-robot systems, specifically for UAVs operating
from a mobile (and moving) UGV. Our work was directly
cast in the scenario of a rover operating autonomously for
a dynamically changing task and using UAVs to augment
its capabilities. Prior art shows a broad diversity of coop-
erative UGV/UAV exploration systems, but with regard
to high-level autonomous explorations (were both UGV
and UAV are fully autonomous systems) our work con-
stituted a contribution to the state of the art. Since the
previous reports, our work has progressed further.



In this article we will revisit the original work, which was
developed for 2D environments / enabled the cooperative
system of systems to be operating basically as a ground
based vehicle. We will extend the results to 3D environ-
ments and apply our work to exploratory missions.

Section 2. Next section explains the exploration prob-
lem we aim to solve. Section 3 will describe the original
TERRA algorithm, as we will build upon it in the next
sections. Section 4 explains the steps solve R? instances,
resulting in the 3DTERRA algorithm. Section 5 shows
experimental results where we demonstrate the effective-
ness of the new algorithm in R environments. Finally,
conclusions are outlined.

2. THE PROBLEM DEFINITION

The exploration problem is called the Energy Con-
strained UAV and Charging Station UGV Routing Prob-
lem (ECU-CSURP) [RMRM19, Rop20]; it is defined as:

(i) an R? Euclidean space A: the exploration area.

(ii) aset £ of locations [; and a set of target locations 7~
(with 7 C £) within A. One of the locations, [y, is
the home location. Each location [ in this R? space
is defined by its coordinates: (x;, ;).

(iii) a simple heterogeneous multi-robot (UGV-UAV)
system. Both of these systems are modelled as Du-
bins vehicles [Dub57], i.e., vehicles that can only
move forward and are doing so at a constant speed.

with the following constraints:

(iv) the maximum distance any UAV can travel on a sin-
gle battery charge is limited (energy constraint).

(v) at least one location /,, is further away from [ than
the UAVs’ energy constraint allows them to travel.

Contrary to the UAV(s), the UGV is not subjected to an
energy constraint and can move freely. The UGV can fur-
thermore serve as a charging station for the UAV, mean-
ing that UAV(s) that have landed on the UGV are being
recharged to their maximum travel distance. In our model
we consider a UGV-UAV system with only one UAV.

The objective of the ECU-CSURP is to find a coopera-
tive routing for the simple UGV-UAV system that (a) en-
ables the UAV to visit every target in £ (starting from,
and returning to, /) while trying to minimize the overall
traveling distance.

In our model, we assume constant velocities for both the
UGV (vygy) and the UAV (vy,y). For a constant battery
capacity this means that there is a maximum flight time
t... and thus a maximum distance d,,,, a UAV can travel

on one battery charge. Since the UAV has to return to the
UGV to recharge, the operational radius 7 of the UAV can
be calculated as d,,,/2 (assuming that the UGV does not
move). For significant differences in speed for UGVs and
UAVs (orders of magnitude) we assume that this simpli-
fication suffices to estimate r (as shown in Figure 1).

Home base lg
Target location [;
UGV stop l;

Coveragearea @

Coverage radius r

Figure 1: An ECU-CSURP problem with 9 target loca-
tions l1,..., lg plus l,, the home base of the UGV-UAV
system. 7 (half the maximum flight distance of the UAV)
defines a; (a; C 2), the area the UAV can safely cover
when taking off from location /. In the above example,
the 4 locations Iy, 14, [ and l¢ (i.e., UGV stops) suffice
to position the UAV within reach of all 9 target locations.

3. THE TERRA ALGORITHM (R?)

Before presenting the revised algorithm for R? spaces
we first introduce the original: TERRA, the cooperaTive
ExploRation Routing Algorithm, a cooperative path plan-
ning algorithm to solve the ECU-CSURP for R? spaces.

TERRA enables the cooperation between two classes of
autonomous / unmanned vehicles and capitalizes on the
resulting synergies: the larger and much slower UGV,
while restricted by the terrain in its movement, serves
as a mobile charging station for the much faster airborne
UAVs. However, other than the UAV, a UGV incurs lit-
tle or no operational cost when stopped outside the home
base and can therefore operate much longer (in time) than
a UAV. In addition, it can also slowly move through the
environment while resupplying a UAV with power for
another flight, thereby moving the coverage area for the
UAV (which has the UGV as its center; cf. Figure 1).



Given a set of target locations, TERRA determines a
favorable sequence of waypoints (charging stops) that,
when traversed by the UGV, enable the UAV to fly to the
target locations that are within reach before returning to
the UGV in order to recharge and be transported to the
next waypoint, and, ultimatelly, back home.

To achieve this, the TERRA algorithm uses five stages:

1. Voronoi search:

Calculating stopping positions for the UGV. The
UAV has a maximum field of coverage. The
Voronoi search essentially looks for locations that
can serve as the center of such coverage circles
(UGV stops) while including as many target lo-
cations as possible. The computational methods
follows a similar approach to the Preparata and
Shamos’s method [PS12].

2. Combinatorial optimization:
Finding an optimal set of such UGV stops, so that
all stops together cover all target locations, and do
so with as few circular areas as possible. In e.g.,
Figure 1 only 3 stops (as well as the initial position
at the home base) suffice to bring all target locations
within the coverage of the UAV.

3. Gravitational optimization:
With a potentially large number of locations (centers
for coverage) equally capable of covering a given
set of target locations, there is room for further opti-
mization. See Figure 2 for an example.

lc (cf. Fig. 1)

Alternate options for /&

Figure 2: The UGV stop I from Fig. 1 and example al-
ternates, which cover the same 2 target locations. Option
1 has the UGV stop in the forest, while options 2 and 3
are basically identical with one of the target locations.

We assume that we optimize for operational time.
Since the UGV is significantly slower than the UAV
we prefer UGV stops that are closer together (i.e.,
closer to their combined center of gravity).

4. UGV path heuristic using a Genetic Algorithm:
Having a minimal set of UGV stops, even when
these are as close together as possible does not
yet provide us with a path for the UGV. Finding
an optimal path (the well-known Travelling Sales-
man Problem (TSP) [Cum)]) is solved by a Genetic
Algorithm applying a tournament selection method
[GD91] to repeatedly select the best individual of a
randomly chosen subset.

5. An A* [HNRG68] based heuristic for the UAV path:
Similar to the UGV path, the UAV path can be opti-
mized for minimal length. This differs slightly from
the problem for the UGV as the UAV may have to re-
turn to charge even within a single field of coverage
if there are too many target locations. This means
that the TSP from above changes in that it allows
the UGV to be visited multiple times. We solved
this with a variation of the A* algorithm.

Stage 1: Voronoi search

This algorithm takes a set {l;,...,l;+n} of target loca-
tions as input and partitions A into areas such that (a) the
union of all of these areas is an area inside A that contains
all target locations. The output is a set of such areas, de-
fined not by a location but, abstractly, by sets of target
locations that can be placed inside an area with radius 7.

Input: TargetLocations: {l;,. .., liin}
Output:  Custers,;

So each cluster is a subset of the target locations and the
union of these sets equals the set of all target locations.

Stage 2: combinatorial optimization

In stage two, the partitioning of the target locations into
clusters of target locations, provided by stage 1, is opti-
mized: the algorithm returns the minimal set of clusters
that covers all target locations.

Input:  Clustersy;
Output:  Clusters,,,

with Clusters,,;» C Clustersy;.

Stage 3: gravitational optimization

In this stage, the clusters (so far only defined abstractly as
the set of target locations which they cover) are mapped
to specific locations in A. The algorithm determines, for
each cluster, a suitable center location (i.e., the position
for the UGV stop). It then optimizes these locations such
that each UGV stop is moved as close as possible to the
center of gravity of the set of locations (while still keep-
ing its target locations inside the coverage of that stop).

Input:  Clusters,in: {¢j,...,Cjtm}
Output:  ChargingStops: {l.;,...,l

7 YCjtm

Stage 4: a GA heuristic for the UGV path planning

We developed a genetic algorithm based heuristic to de-
termine the shortest path for the UGV.



Input:  ChargingStops: {l.,, ..., }

©VCi+m
. uGv
Output: path{lcj vodey i}

Stage 5: a heuristic for the UAV path planning

Finally, for each charging stop for the UGV, we calcu-
late the shortest path (or paths) that enable the UAV to
visit all target locations. Since we may have to revisit the
UGV for intermittent charging of the UAV, an approach
is needed that can return multiple paths.

Input:  Clusters,,;n: {cj,...,Cjym} and
Chag;jngStops: {le;, e lejim
Output: path{cjmcj EERR path{cﬂlmlcﬁm}

Once stage 5 is completed we have all the information
needed to send the UGV-AUV system on its way. The
interested reader is referred to [RMRM19, Rop20] for a
detailed discussion of each of the mentioned algorithm as
well as extensive performance evaluation thereof.

4. THE 3DTERRRA ALGORITHM (R?)

UGVs can operate in 3 dimensions and many interesting
and relevant application scenarios feature (often signifi-
cant) elevations and obstacles. Equipping the algorithm
to handle R? topologies is therefore the logical next step.

The main contribution of this paper is the extension of
the TERRA algorithm to 3D spaces. First, we extended
the ECU-CSURP from R? to R? Euclidean spaces (§4.1).
We then briefly introduce a model for such spaces that
allows us to determine whether a given location is reach-
able by our UGV (§4.2) and then provide the Voronoi
algorithm augmented for R? Euclidean spaces (§4.3).

4.1. Extending the problem from R? to R? space

The first step, unsurprisingly, is to extend the coordinates
for any (2D) location ! from (z;, y;) to a 3D representa-
tion: (x;, Y1, 21). It should be noted that this change only
affects stages 1 and 3 (the Voronoi tesselations (Stage 1)
to determine suitable clusters of location as well as the
gravitational optimization (Stage 3) of a specific set of
UGV stops, as the calculations for both stages are per-
formed on a 3D map. The remaining stages (Stages 2,
4, 5) only require calculations that are dimension agnos-
tic, using e.g., a distance matrix where the values are now
simply calculated over 3 dimensions as opposed to two.

It should be noted that only the ground based vehicle
(UGV) is affected by the added dimension: a rover will
have to cope with uneven terrain by traversing areas of
varying inclination. The UAV can simply increase in al-
titude and fly over unsuitable terrain. This motivates our
decision to continue to model UAVs in only two dimen-
sions (the equivalent to flying at a constant altitude).

4.2. The Digital Terrain Model (DTM) for R> space

To model R? space we chose to adhere to the Digital Ter-
rain Model (DTM), a well used 3D computer graphic rep-
resentation of R? Euclidean spaces. A DTM represents
the bare ground surface (elevations) but without any ob-
jects like trees or buildings (obstacles). With the domain
of planetary exploration on e.g., Mars in mind, we argue
that focusing primarily on elevation is justified.

Muiioz et al. [MRMC17] model a DTM as a grid of rect-
angular cells, where each cell is formed by four adjacent
nodes on the map. These four nodes, combined with a
central point of the cell, form four triangles. The slope of
each triangular plane determines the slope of each node
at the rectangular cell. This model expresses this com-
puted slope and other terrain characteristics as a numeri-
cal value. This value indicates the cost (i.e., the estimated
effort) required to cross an area on the map.

When imposing a threshold on this cost we can distin-
guish two kinds of nodes, namely:

» Legitimate (reachable) nodes, i.e., nodes that can be
crossed by the UGV (because the projected cost its
lower than a given, UGV-dependent threshold) and
represent a feasible option for a charging stop; and

* Illegitimate (unreachable) nodes, that cannot be
crossed by the UGV due to prohibitively high costs.

We use the DTM geometric formulation presented in
Muiioz et al. [MRMC17] to compute the objective func-
tions of the amended ECU-CSUREP. It defines a method to
compute the approximate distance travelled by a vehicle
through adjacent (or not adjacent) 3-dimensional nodes.
For that, they interpolate the elevation of nodes that are
inside of the rectangular cell. To use this, we only have
to extend the original problem definition’s coordinates for
any (2D) location [ from (z;, y;) to a 3D representation:
(x1, y1, 21), with z; the elevation obtained from the DTM.

4.3. Extending the Voronoi search from R? to R3

As the TERRA's first stage, our Voronoi’s search method
looks for placing intermediate charging stops in the
UGV’s path, so the UAV can reach the target points with-
out running out of energy. In R? Euclidean spaces, the
map is an open (without obstacles) and flat terrain, so ev-
ery point is a legit node (also called as legit vertex) to be
a charging stop, because the UGV can cross every point
without problems. Nevertheless, as we mentioned in the
previous section, a point may not be legit to be crossed
by an UGV in DTMs.

We updated our Voronoi search algorithm as outlined in
Alg. 1. This revised algorithm differs from the original
version (described above, for full details the reader is re-
ferred to [RMRM19]) with the three main changes being:



1. The computed Voronoi vertices in the Voronoi func-
tion (line 10 of Algorithm 1) are formed by legit ver-
tices Lyov -, illegit vertices £2°v = and vertices
which are out of the map boundaries. This distinc-
tion is mandatory in order to select legitimate ver-
tices that cover the target points, and the nearest ver-

tices of each target point not covered yet (line 24).

2. The fus: function (line 17) now computes the 3-
dimensional (as opposed to 2D) distance between a
target point and a legit vertex using Pythagoras.

3. The fqummy function (line 8) computes the false
Voronoi vertex (Vqummy) to facilitate covering an
isolated (lone) target point. This is necessary
because the Voronoi function cannot compute a
Voronoi tessellation with only two vertices. The
fdummy function roams around the target point in
a spiral, starting at r and moving inwards. The goal
is to find a legit vertex inside the coverage area.

Furthermore, the algorithm requires the cost map (Map),
which is exported from the DTM and operates on the fol-
lowing sets: Tcoveren, the set of target locations that are
already covered, Topey, the set of target locations that are
not yet covered (Tcoverep N Topew = 7, the initial set of
target locations). The algorithm outputs a set of charg-
ing locations for the UGV, Lg,. The algorithm further-
more makes use of 5?‘/’, the set of all neighbours for any

location in some set £, calculated by function fcqr-
As discussed above in §4.2 we use the DTM to distin-
guish reachable from unreachable locations. Internally,
these are calculated by fruev  and f ucv and repre-
sented by £ . and L5 . The Voronoi algorithm,
fvoronoi» takes a set of target locations 7 as input and
returns calculated Voronoi tesselations V.

The introduction of legitimate and illegitimate vertices
does not only impact the Voronoi search, but also the
gravitational optimization algorithm. In this way, its al-
gorithm is updated to detect if the computed junction
point is a legit or an illegit vertex. That is, the new al-
gorithm works in a same way but computing the corre-
sponding R? Euclidean functions.

Computing 3-dimensional UGV’s paths represents a sig-
nificant enhancement of the TERRA algorithm to solve
R3 problem instances. However, we do not compute the
UAV’s 3-dimensional path as well as other physical con-
straints, such as wind speed or atmospheric density for
two reasons: first, some of them imply an explosion in the
problem complexity and, second, dynamic constraints (as
wind speed) cannot easily modelled neither predicted to
be exploited in off-line planning (they are better suitable
for on-line adaptation of the plan during execution).

For the UGV’s 3-dimensional path, we introduce an
additional stage after computing the TSP for the two-
dimensional UGV’s path (Stage 4). This new stage is the
3Dana algorithm [MRMC17] a path planning algorithm
developed to obtain safer routes based on heuristic search
over a DTM and/or a traversability cost map.

Algorithm 1 3D Voronoi search method

1: Procedure Voronoi3DSearch(7,r, Map)
2: 7:)PEN «T

3: vertices < Topen

4 LV, L, ‘ng\c/hub]e’ ‘ng’n\]’?euchuhle 0

5: while 7oy # 0 do

6: Vdummy @

7: if |vertices| == 2 then

8: Vdummy < fdummy(vertices),r, Map)
9: else

10: V < fvoronoi(vertices)

11 Egg\th\ble — f LYY e (V, M ap)

12: ‘ng‘\;zeacmble <~ f LY cachable (V7 Map )
13: end if

14: E]L?Ii\c/hable — ﬁgz\clhah]e U Vdummy

15: for [ € Topn do

16: for € £ . do

17: if fgis:(t,1) < r then

18: Toren < %PEN/Z

19: Loy < Lygy UL
20: end if
21: end for
22: end for
23: for | € Topy do
24: L = L2 frear (L Loger Lxomeacnasie)
25: end for
26: vertices = Toppny U L™

27: end while
28: A < ComputeAreas(V,r) return Ly, A
29: End Procedure

The 3Dana algorithm generates long term paths, exploit-
ing a DTM geometric formulation without requiring a
mechanical model of the robot. Due to this, the paths
generated are safer than the ones obtained from represen-
tations combined into a single cost map.

5. EXPERIMENTS

To evaluate performance two experiments were devised:
one assesses the ability of the 3DTERRA algorithm to
find the minimal set of legit locations for the UGV and the
second evaluates the overall performance of 3DTERRA.

The first is necessary because the search for legit loca-
tions is costly but can reduce the effectiveness of stage
one and two of the algorithm, if done sub-optimally, es-
pecially in rugged terrains. To address this, a clustering
optimization was performed to assess the algorithms per-
formance for finding the minimal set of locations required
to cover the target locations. The second is related to the
integration of 3Dana [MRMC17] into the algorithm.

Both experiments have been performed under a real Mars
DTM, namely the central uplift of a 30-Km diameter
crater in Noachis Terra, as captured by the High Reso-
lution Imaging Science Experiment (HiRISE) on board
the Mars Reconnaissance Orbiter. Its identification in



the HiRISE database is: DTEED-030808-1535- 031230-
1535-A01 [Uni]. Taking advantage that the 3Dana algo-
rithm aims to find safe routes for the UGV, we wanted
to assess the performance of these experiments according
to different safety levels in the navigation of the hetero-
geneous simple UGV-UAV system. These safety levels
allows us to describe several risky environment settings
through the next two parameters:

* Terrain slope (P): 3Dana uses terrain slope as a
threshold to compute a UGV’s path where every
point has less slope than this threshold. A high
safety level will be determined by a lower slope as
the UGV’s path avoids dangerous terrain features.

* Security range (§): the distance percentage that is
going to be subtracted from a theoretical farthest
distance (r,,,) the UAV can travel without running
out of energy, e.g., with r,,, = 300 meters and
B = 0.1(10%). Then, r = 7, — (T *3) = 270 me-
ters. The goal of 3 is to avoid depleting the UAV’s
battery due to unpredictable conditions.

5.1. Clustering optimization experiment

The first experiment evaluates the first and second stages
of 3DTERRA. We have described that the goal of these
stages is to minimize the number of legit vertices, de-
noted as £; required to cover the whole set of target
points. But, we cannot ensure that £ is optimal on
every distribution. Then, we use a random scenario gen-
erator of to define the optimal number of legit vertices,
known as 4, on every distribution.

The random map generator creates every scenario ensur-
ing that 7 target points are distributed in ¢ legit vertices,
inside a specific radius R and allocated around a real Mars
DTM. Here, the 0 parameter allows us to define the opti-
mal number of legit vertices to cluster every target point
on each scenario, i. e., 3DTERRA can compute, at the
very least, § legit vertices. Therefore, we are able to com-
pare £ and § to detect when 3DTERRA has com-
puted an optimized scenario. We have defined £ =~ =
0 as an optimized scenario.

This experiment consists of the execution of ten thousand
random scenarios over the Mars DTM with the four dif-
ferent safety levels based on r and P (L1 = low safety,
L4 = high safety) displayed in Table 1. P is ranged from

20° to 1° (plain terrain). 8 goes from 10% (low security
range) to 90% (high security range). Then, the goal of
this experiment is to determine the optimized scenarios
percentage in the L1-L4 safety levels.

The results in Table 1 show that as long as the safety
level increases from L1 to L4, the percentage of opti-
mized scenarios (when L0V = §) decreases. L1 shows
the highest percentage of optimized scenarios, because a
high P and a low (3 represents more possibilities to find
legit vertices around the target points, and then, to achieve
L2 . = 0. L4 shows the lowest percentage of opti-

mized scenarios, because of the highest 8 and the lowest
P, so there are few legit vertices around the target points.

Also, we can appreciate that the computational time
increases as long as it does the safety level, because
3DTERRA finds less legitimate vertices to ensure legit
vertices lose to the target points. So, if a legit vertex can-
not be reached by the UGV, its means that the target point
cannot be visited by the UAV and then, the scenario does
not have solution. As shows the L4 results, 3DTERRA
does not find a solution for 2759 scenarios.

5.2. Computational performance vs. Safety

The second experiment evaluates the performance of
3DTERRA as a whole, over different safety levels. The
performance has been assessed in terms of the compu-
tational time taken to solve every scenario and the com-
puted distance travelled by the UGV-UAV system.

This experiment consists of the evaluation of one hundred
scenarios over the Mars DTM [Uni] with the safety levels
displayed in Table 2.

P is ranged from 20° to 5° (almost a plain terrain).
goes from 10% (low security range) to 90% (high secu-
rity range). The results in Table 2 shows that as safety lev-
els increase from L1 to L4, the travelling distance clearly
grows, the number of scenarios with solution decreases
and the computational time increases exponentially.

The distance travelled by both robotic systems is the low-
est for safety level L1 since the UGV has more ability to
avoid obstacles (high P) and the UAV can fly a farther
distance (low (). Then, it is easier to reach a legit ver-
tex close to a target point, which in turn minimizes the
distance travelled by the robots. Also, the computed sce-
narios with solution decreases in a higher safety level due

Table 1: Clustering optimization of the first two 3DTERRA’s stages in different safety levels over a Mars DTM [Uni]. It
has been computed a total of 10000 random scenarios for each safety level. SS = scenarios with solution, WS = scenarios
without solution, and OS = optimized scenarios. RTime is the runtime in milliseconds.

Level B(%) P() #ss #ws 0S (%) RTime (ms)
L1 10 20 10000 0 71.0 6.5
L2 30 10 10000 0 62.3 12.2
L3 60 5 10000 0 63.1 16.7
L4 90 1 7241 2759 39.2 26.1




Table 2: Performance of 3DTERRA under different safety levels over a Mars DTM [Uni]. Every level has been tested
over the same 100 random scenarios. I, 4, = distance travelled by the UGV in km, F,,4, = cumulative distance travelled
by the UAYV, SS = scenarios with solution, and WS = scenarios without solution. RTime is the runtime in miliseconds.

Level [(%) P(°) Fug(km) Fuaw(km) #Ss #wS RTime (ms)
L1 10 20 10679.2 1096.1 93 7 226.6
L2 30 15 10727.5 1095.7 65 35 485.6
L3 60 10 11807.8 1109.7 4 96 3562.0
L4 90 5 0 0 0 100 0
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We presented, SDTERRA, which incorporates modifica- determination of minimum cost paths. IEEE
tions to several of its original phases, affecting the place- transactions on Systems Science and Cyber-
ment of recharging stops and the computation of the 3- netics, 4(2):100-107, 1968.
dimensional paths for the UAV and UGV. We tested these [MRMC17] Pablo Muifioz, Maria D R-Moreno, and
modifications with a set of experiments using real data Bonifacio Castafio. 3Dana: A path plan-
from a DTM of the central uplift of a 30-Km diameter ning algorithm for surface robotics. En-
crater in Noachis Terra on Mars, showing that even if the gineering Applications of Artificial Intelli-
clustering optimization gets more complex and compu- gence, 60:175-192, 2017.
tational performance increases with the 3D environment, [NAS20] NASA. Mars 2020 Mission Perseverance
3DTERRA can solve exploratory mission problems with Rover with the Mars Helicopter Scout. ht
a performance dependent on the battery capacity of the tps://mars.nasa.gov/mars2020,
UAVs, the clustering level of the target points in the ex- 2020. Accessed: 05-01-2020.
ploration area, and the complexity of the terrain features. [PS12] Franco P Preparata and Michael T Shamos,
Computational geometry: an introduction.
Springer Science & Business Media, 2012.
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