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ABSTRACT

Cooperation between robots is emerging as a promising
technique to improve performances, but it still remains
unused for robots in space exploration missions. This
paper presents a modular approach in which Coopera-
tive Localization and Mapping based on Graph Optimi-
sation and inter-robot loop closure detections for hetero-
geneous lunar robots is proposed. The approach relies
on a smoothing technique, based on graph optimisation
and a module to perform features-based matching be-
tween sub-maps of different robots. A global map is
then built using the optimised poses. The method pro-
posed shows a significant decrease in the error of the
pose estimation in different scenarios. Thanks to the de-
sign choices, the number of nodes increases less than in
the classical approaches, making the optimisation process
faster. It has also been shown how the optimised tra-
jectories can be used to obtain a qualitatively improved
representation of the environment using multiple robots.
This solution is developed within the scope of Coopera-
tive Robots for Extreme Environments (CoRob-X) which
is an EC-funded project with the objective of demonstrat-
ing how a multi-agent robotic team can explore a lunar
lava tube. Three Robotic Explorer Units (REUs) form a
team of heterogeneous robots, with different locomotion
systems and sensors. SLAM is still a crucial problem in
extreme environments such as the Moon surface.
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1. INTRODUCTION

The paper first introduces the CoRob-X project and its
scenarios, that are the context in which the Collaborative
Mapping (CMAP) component was developed. This sec-
tions also presents the state of the art of Collaborative
SLAM, to give additional context to the work described
in the paper. Next, Section 2 describes the proposed ar-
chitecture, from a general overview of its interfaces, to a
detailed explanation of each sub-component. In Section
3, the results of the tests with different datasets and in
simulation are presented. The performances are analysed
both in terms of mapping and localisation performances,

trying to identify the main differences and challenges.
Lastly, Section 4 collects all the conclusions drawn from
the previously shown tests and how the component per-
forms in the various cases. Additionally, possible future
and interesting activities are presented.

1.1. CoRob-X Project

Cooperative Robots for Extreme Environments (CoRob-
X) is an EC-funded project within the framework of the
SRC Space Robotics Technologies. The project is carried
out in cooperation with several companies, universities,
and research centers in Europe. The project objective
is to demonstrate that a multi-agent robotic team could
achieve tasks otherwise impossible or carries high risk
for a single robot. In particular, the field of interest is the
exploration of lunar lava tubes, volcanic caves accessible
from the Moon surface. Such caves are of great scien-
tific interest as they are the main candidates to establish a
human settlement, protected from space radiations. Sim-
ilarly, the development of these technologies could easily
find Earth applications in the future, like the exploration
of human safety-critical places, like mines and tunnels.

The ground demonstration of the project reproduces a lu-
nar mission, further divided into several Mission Phases:

• Mission Phase 1 (MP1): all the rovers explore and
map the surrounding of the lava tube to find the op-
timal entry location.

• Mission Phase 2 (MP2): the LUVMI-X rover de-
ploys its Payload Cube to generate a preliminary
map of the skylight and floor of the lavatube.

• Mission Phase 3 (MP3): the Coyote-III is lowered
into the lava tube from a rappelling system mounted
on Sherpa-TT.

• Mission Phase 4 (MP4): the Coyote-III explores the
tunnel of the lava tube.

For the Collaborative Mapping component described in
this paper, the most relevant phase is the mission Phase
1 (MP1). In this scenario, the objective is to explore the



Figure 1. REUs mapping the surroundings of the lava
tube.

surroundings of the lava tube and to build a map of the
environment around the access of the lava tube. To do
so, three Robotic Explorer Units (REUs) will cooperate,
sharing sensors data, to fuse independent rover maps and
improve the quality of map estimation and to speed up
the map building process using overlapping information.
The involved rovers are SherpaTT (REU-1) and Coyote-
III (REU-2) from DFKI, and LUVMI-X (REU-3) from
Space Applications Services. Each rover is equipped with
a variety of sensors. In particular, all of them have either a
stereo/depth cameras or a Lidar, wheel odometry, and an
additional stereo camera for visual odometry. Each REU
processes data from its sensors to create a detailed 3-D
map of the environment and estimate its pose. During
the whole operation, the robots communicate with each
other and exchange map and pose data. Thus, after the
exploration, a joint map is built. A rendering of the sce-
nario, showing the different REUs, is showed in Fig. 1,
while the final demonstration will be held in Lanzarote in
January 2023, in a test site with an actual lava tube.

1.2. State of the Art Collaborative SLAM

In the Autonomous Mobile Robotics field, a crucial issue
is to give the robot the capacity to recognize its position
and orientation in space and to build a map of the envi-
ronment, to perform several kinds of tasks. The prob-
lem to simultaneously localize the pose of a robot and
map the environment around it is known as Simultane-
ously Localization And Mapping (SLAM). It is a com-
plex problem since it is necessary for a good pose esti-
mation to make a good map estimation and vice versa.
Single robot SLAM is a well-addressed problem in lit-
erature [1]. Depending on environmental conditions and
hardware architecture of the robot different approaches
are taken. One of the popular widespread approach is the
dynamic filtering through Extended Kalman Filter (EKF)
[2]. In the last years, however, other approaches be-
come popular, like Unscented Kalman Filters (UKF) [3],
Rao–Blackwellized Particle (RBPF) Filters [4], Sparse
Information Filters (SIF) [5]. The most popular today is
probably the Pose Graph Optimization approach [6] [7]
for its scalability to large systems and representation flex-
ibility. While these solutions are widely used and robust,

Figure 2. High Level Architecture of CMAP.

the problem of different robots performing SLAM at the
same time and place has fewer studies and applications
around it. This kind of problem is usually addressed as
Cooperative SLAM (C-SLAM). A systematic review is
taken in [8]. C-SLAM seems to be a very promising ap-
proach to overcome the single-robot SLAM limitations.
It could be useful in obtaining better estimation accu-
racy, especially in extreme environmental conditions, like
space exploration, difficult-to-reach, or dangerous places.
Solutions to decrease computational time can be explored
through distributed approaches. Also, it can be a robust
approach in case of a single robot failure. C-SLAM ap-
proaches are usually an extension of a single robot SLAM
problem. So classical approaches like EKF [9], UKF
[10], RBPF [11], SIF [12] are studied. The most promis-
ing one, anyway, seems to be the Pose Graph approach
[13], which will be the object of study of this paper.

2. COLLABORATIVE MAPPING

This section will present the development of the Collab-
orative Mapping solution, referred to as CMAP, starting
from an high-level overview of the overall architecture
in ROS and the interfaces between the various subcom-
ponents. Then, each subcomponent will be described in
details.

2.1. Software Architecture

The Collaborative Mapping component (CMAP) was de-
veloped win the ROS framework to make use of its data-
handling and communications functionalities, and take
advantage of its ease of integration and deployment. A
high-level architecture diagram, Fig. 2, shows the vari-
ous components and their interfaces.



The main idea behind this architecture is to use various
inputs, namely maps, poses and inter-robots detections
(meaning a relative pose from a robot to another), to gen-
erate constraints between the poses of the REUs. These
constraints and poses are used to populate a pose-graph,
that is then optimized to generate a more accurate tra-
jectory. The maps collected from each REUs are then
registered in these new collection of optimised poses to
generate a global map, that is more precise than the sin-
gle ones, and brings together the data from all the REUs.

To better understand the logic of the CMAP component,
this can be first divided into two main blocks. A first
block, referred to as Submap Matching, is executed for
each REU. It takes as inputs the local maps (that can be
either Lidar scans or a pointclouds from a stereo cam-
era), REU pose and inter-REU detections, and generates
the appropriate constraints. These constraints are then
used in the next block, the Graph Optimization compo-
nent, which creates a pose-graph based on the constraints
and poses of the REUs, and optimises it to generate the
better poses.

2.2. Graph Optimisation Component

SE(3) objects have been chosen to model the vertices of
the graph robots poses and R3-vectors for landmarks.
The same parametrisation has been chosen for edges,
with SE(3) objects for edges between robot poses and R3-
vectors for edges between landmarks. In particular, all
positions considered in the Graph are considered with re-
spect to a fixed navigation frame East-North-Up (ENU).
It’s usual to perform error minimization on a manifold for
blocks that span over a non-Euclidean space. A manifold
is a topological space that locally resembles Euclidean
space near each point. Mathematical details are reported
in [7][14]. Indeed in the SLAM problem, the state lives
in SE(3), belonging to the Lie algebra. To define a cost
function is necessary to define an error function and mea-
surement function. The measurement function between
two REU pose nodes Xx(t) and Xy(t), can be expressed
as:

hp
xy(t)

.
= Xy(t)⊖Xx(t) (1)

and then the error function is simply given by the relative
transformation between the measurement and the mea-
surement function:

epxy(t)
.
= zpxy(t)⊖ hp

xy(t) (2)

Given the error function then it is possible to evaluate
different cost functions. In general, given a cost function
F(x) a minimization problem tries to find x∗ such that:

x∗ = argmin
x

F(x) (3)

In the scope of this work three cost functions have been
investigated. The first one is the classical Least Squares,
described by:

F(x) =
∑
t

eTxy(t)Ωxy(t)exy(t) =

=
∑
t

ρ2

(√
eTxy(t)Ωxy(t)exy(t)

)

With:

ρ2(x)
.
= x2 (4)

This cost function has been widely applied in different
fields and in vary range of problems. Thus, the error vec-
tor e has a quadratic influence on F, so that outliers have
a major negative impact on the cost, while they should
be rejected. In order to reject outliers it has been con-
sidered the Huber robust cost function. It can be defined
changing the ρ parameter like this:

ρH(x)
.
=

{
x2 if |x| < b

2b|x| − b2 else
(5)

where b is a threshold for outlier rejection, so that F is
quadratic for small |x|, but linear for large |x|. It has been
considered also more robust cost function like Cauchy
one. It is described by:

ρC(x)
.
=

c2

2

(
1 +

(x
c

)2
)

(6)

With respect to Cauchy cost function, Huber kernel has
to advantage that it is still convex and thus does not in-
troduce new local minima in F. Constraints have already
been defined from a mathematical point of view. How-
ever, it is necessary to distinguish between different kinds
of constraints, even if they are the same kind of mathe-
matical object. The first kind of constraint is the odom-
etry edge. It gives the relative transformations between
2 consecutive poses of the same REU. Then it could be
possible to use also as constraints the relative transfor-
mations between poses and landmarks as between land-
marks themselves. However, it has been deciding to an-
alyze also a different approach. As discussed above, the
computation time for the minimization of the cost func-
tion grows exponentially with the growth of the state vec-
tor. So it has been decided to pre-process the informa-
tion coming from landmarks into the Submap Matching
module to extrapolate a direct constraint coming from the
base node, centered in the origin of ENU frame, to a par-
ticular node. This allows lowering the rate of growth of
the calculation time significantly. The last kind of con-
straint, proper of a C-SLAM problem, is the Inter Robot
Detection constraint. In fact, through the detection com-
ing from recognizing the other robot in the space and



computing the relative transform, it is possible to give the
robot a new kind of constraint that wouldn’t be available
in a single SLAM approach. It is modeled like an edge
between a REUx node to a REUy node, with x=1,2,3,
y=1,2,3 and x ̸= y.

2.3. Submap Matching Component

The role of the Submap Matching component is to gener-
ate pose constraints, for each REU, from the local maps
collected over time. This is accomplished in a sequence
of steps, as shown in Fig. 3.

Figure 3. Flowchart of the Submap Matching Compo-
nent.

Once a local map is received (meaning sensors data from
a stereo camera or Lidar), they undergo a filtering step
to remove NaN, down-sampled using voxellisation and
prepare the appropriate data structures for the next steps,
such as computing their surface normals.
The pointcloud is a very heavy structure, so to ease com-
putation only a handful of points are selected using Key-
points Selection methods, such as the Harris Detector
[15], which selects interesting points based on a corner
mask. For each of these points then a descriptor is com-
puted. As the name suggest, a descriptor is used to de-
scribe the neighborhood of a point, and allows to com-
pare them, to find the same point in a different pointcloud.
Several Descriptor Extraction algorithms were tested, the
final selection lead to the use of the Fast Point Feature
Histograms (FPFH) [16] if the pointcloud is purely geo-
metrical (meaning the points only contain XYZ data), and
the Color SHOT (CSHOT) descriptor [17] if the points
contain also color information (XYZRGB), which is of-
ten the case for data coming from stereo-cameras.
At this point, the sensor data is now a much smaller, and
information rich, data structure made of keypoints, nor-
mals and descriptors. This data is saved to progressively
build a collection of landmarks as the REU moved. It is

also shared with the other REU, so that each robot has
information from all the places it and the other REU vis-
ited. These are referred to as Global Landmarks. To
reduce the size of this data, if a point is close to an al-
ready saved point, and has a similar descriptor, it means
it is likely a duplicate of the same landmark and will not
be added. This step greatly helps to keep a manageable
size and avoids an overload of data in a small region of
space, which would not help when performing matching
and pose estimation.
The last two remaining steps are the core of this compo-
nent. The keypoints and descriptors computed from the
last received local map are matched against the Global
Landmarks. To ease computation, only a small window
of the Global Landmarks is used, selected around the last
pose of the REU. The matching is performed looking for
the most similar pair of descriptors. It is further refined
with a method called Mutual Consistency Check: for a
match to be valid, both the points have to mutually have
each other as their best match.
Once a collection of matches between a target and source
pointclouds are found, the transformation between them
can be estimated with several methods. After a first inves-
tigation phase, it was decided to use a combination of the
Singular Value Decomposition (SVD) and Iterative Clos-
est Point (ICP). The SVD is an optimisation algorithm
and was used to provide a first guess of the transforma-
tion as additional input of the ICP, that would then refine
it.
Lastly, this transformation is converted into a constraint,
and covariance data is added based on a score metric from
the ICP.
These steps were implemented using the Point Cloud Li-
brary (PCL) [18] in C++ and wrapped in a ROS node,
along with all the necessary parameters and interfaces to
be fully integrated in the CMAP architecture.

2.4. Inter Robots Detection Component

This component provides an additional constraint in the
form of a relative transformation from one REU to the
other. At the moment this component is simulated from
ground truth data and adding a white noise on all position
and orientation components.
There are various strategies to implement this. Space Ap-
plications Services is maintainer of Infuse, which pro-
vides three possible solutions: Aruco pose detection,
rover wheeled pose estimation, and model based detec-
tion from camera images [19], [20]. Additionally, a
Deep Learning based alternative is being tested, based on
PoseCNN [21].
This component is intended to be developed and tested
for the first field test campaign of CoRob-X in Septem-
ber 2022, where all the robots will be together and real
images from their respective caeras can be used.



2.5. Optimization Approaches

Smoothing problems require an intensive computational
resource exploitation to be solved and the solution to the
problem could still require a time not suitable to run the
algorithm online. In order to guarantee the modularity of
the architecture, the first approach is to run the Submap
Matching and the Graph Optimization components se-
quentially. In this way all the constraints coming from the
first module go to the second and the optimization can be
fully performed offline, eventually changing parameters
as the cost function or the solver. A second approach is
to run the two components in parallel, providing in feed-
back the latest optimized poses to the Submap Matching,
which, using a more accurate pose estimation, could per-
form a better estimation of the correct transform. This
last approach is then also suitable to be performed online.
The delay provided by the computational time required
by the Graph Optimization could nevertheless bring to a
larger error if it is not small enough. Furthermore, an-
other aspect to take into consideration is that in this case
the two components are strictly coupled and then chang-
ing the parameters is not possible, therefore less flexibil-
ity.

3. RESULTS

In this section simulation and experimental results will
be discussed. To test the entire CMAP stack, it has been
necessary to build a simulation environment suited for
perception purposes, so carrying on both dynamics mod-
els of a wheeled robot and different sensors. The most
suitable solution has been identified in Webots simula-
tor [22]. To further validate the CMAP stack, datasets
from real scenarios were used. In particular, it has been
initially tested with a dataset collected on a previous
project of the company, Pro-Act. Then, datasets from
the ADE project were used, which are of particular inter-
est since they employ the same robot that will be used in
CoRob-X, the Sherpa-TT. In all of the datasets presented
only Submap Matching constraints have been considered.
A standard metric for evaluating the performance has
been considered. In particular the Mean Absolute Error
(MAE) and the Mean Squared Error (MSE) of Position
and Attitude estimation are considered. For each of the
test cases proposed, the estimation of the trajectory of the
REUs is evaluated in a standard graph that represents the
MAE across the components X, Y and Z of the position or
Roll, Pitch and Yaw over the distance travelled. To eval-
uate the performances of the stack, every test is presented
on several graphs. A first type that allows a quantitative
evaluation of the accuracy of the solution. It plots the
squared norm of the position error over the distance trav-
elled. This allows for a quick evaluation of the overall
accuracy, and the slope of the curve shows the drift as the
robot moves. The usual comparison is made against a lo-
calisation drift of 2% which is the standard in the state of
the art. Another graph that is used frequently to evaluate
localisation algorithms shows the planar path of the robot

from a ground truth source and the estimation. This gives
a better idea of the trajectory the robot is performing and
allows a quick evaluation of its accuracy, both in terms
of the error and the shape. To evaluate the improvements
obtained in mapping, a qualitative approach has been fol-
lowed. A standard feature easily recognizable has been
placed into the map and the distortion can be evaluated.
The results will be discussed in detail in the next subsec-
tions.

3.1. Simulation

Webots is an open-source three-dimensional mobile robot
simulator. It comes equipped with different robot models
and sensors combined with an intuitive interface to build
custom environments, called Worlds, and with a complete
and well-documented set of API to interface with C++
code and ROS framework. To evaluate the performance
of the stack, an unstructured World poor of features has
been built. The terrain has been chosen particularly un-
even and jagged. It has been used a model of Husky
A200TM Robot from Clearpath Robotics to simulate two
REUs. Each REUs is equipped with a GPS sensor to ex-
tract data on position, an Inertial Unit sensor to obtain
the orientation, a model of Puck LITETM lidar from Velo-
dyne Lidar, and a model of Multisense 21 stereo-camera
from Carnegie Robotics. Data on position and orientation
has been post-processed after the simulation to add White
Gaussian Noise and simulate also the drift in odometry.
The only features in the environment are rocks of a dif-
ferent dimension, as it could be a possible lunar scenario.
An overview of the custom World can be seen in Fig. 4.

Figure 4. Overview on custom Webots World

In this scenario, REUs performed a trajectory with the
shape of an X, that can be appreciated in Fig. 5. The
Mean Squared Error (MSE) on REUs trajectory before
the optimization was 0.877 m on REU1 and 0.849 m on
REU2. After the optimization, the MSE on REU1 is re-
duced to 0.224 m and to 0.237 m on REU2. As shown in
Fig. 6, the MAE is considerably reduced.



Figure 5. Overview on the XY plane of Groundtruth tra-
jectories (Blue and Red), pre-optimization (Green and
Brown) and after-optimization (Orange and Purple)

Figure 6. Average of the absolute error on XYZ before
and after optimization, compared with the 2% of the dis-
tance travelled

3.2. PRO-ACT

Pro-Act is an EC-funded project within the Horizon
2020 programme that aimed to develop and demon-
strate cooperation and manipulation capabilities between
three robots for assembling an in-situ resource utilisa-
tion (ISRU) plant [23], [24]. Several multi-robot datasets
were colleted during the project that could be used to
start testing the CMAP on real world data. The se-
lected dataset was collected outdoors and the robots used
mounted both a lidar and stereo camera, which allowed
to test several descriptors for both geometrical and also
RGB pointclouds. The localisation used was coming
from the wheel odometry and the groundtruth from an
ultrasound localisation system. In this case, only one of
the robots managed to find constraints along the trajec-
tory and this resulted in a reduced localisation error, as
show in Fig. 7, while the orientation error remained very
similar.

3.3. ADE

The ADE (Autonomous DEcision Making in very long
traverses) project belongs to the same programme as
PRO-ACT. During this project various datasets were col-
lected from long trajectories executed by the SherpaTT

Figure 7. Norm of the localisation error in the PRO-ACT
dataset.

rover from DFKI, and Magellium, one of the partners of
both ADE and CoRob-X, provided the dataset to further
evaluate the performances of CMAP. This data comes
from only a single rover, but it is interesting to see how
constraints are still found, often from consecutive maps
or loop closures in the trajectory. Fig. 8 shows the tra-
jectory and optimised poses in the planar plane, while in
Fig. 9 a reduction in the error around the constraints can
be seen, both in position and attitude estimation.

Figure 8. Planar trajectory of the ADE dataset.

3.4. Mapping

The first thing to take into account is how to build a global
map using different sensor sources. This is handled by
the open-source ROS Elevation Mapping package, giv-
ing as inputs the point clouds generated by Lidar and/or



Figure 9. Norm of the localisation error in the ADE
dataset.

Cameras. While the performances of a localisation al-
gorithm can be precisely evaluated with various metrics
and comparison with the ground-truth, the evaluation of
the mapping component is often carried out more qual-
itatively. For this, the Webots simulation shown in Fig,
10 was mostly used, comparing the global map built over
the noisy poses from wheel odometry in Fig. 11, with the
one coming from the optimised poses as presented in Fig.
12. It can be noticed how the distortion in the mapping
of the box is smaller in the second case, where the new
poses are more precise.

Figure 10. Webots overview with the reference box high-
lighted in the red rectangle

4. CONCLUSIONS

The outcomes obtained both in simulation and with
datasets from past project show promising results for
an improvement in both localisation and mapping per-
formances. However many challenges are still open
and further improvement is possible. The results in the
PRO-ACT dataset revealed how manual tuning of various
parameters, thresholds, and descriptors for the submap

Figure 11. Global Cooperative Map from odometry poses
with the reference box highlighted in the red rectangle

Figure 12. Global Cooperative Map from optimized
poses with the reference box highlighted in the red rect-
angle

matching is necessary to obtain constraints, as for exam-
ple it was not possible to find any in one of the robots.
Encouraging results were obtained in the ADE dataset,
showing how this approach can lead to an improved lo-
calisation also in a single robot, exploiting constraints
within consecutive maps or loop closures. The test were
performed with only two robots but it could be easily
scaled to larger robotics teams by just running additional
submap matching and inter-robot detection components
on them. This should not have negative effects on the
size of the map, thanks to various checks and measures.
The submaps are matched only in a neighborhood of the
robot’s pose. Additionally, the size of the global map it-
self does not grow depending on the number of robots but
only on the area it covers, since new points are only added
if they do not overlap with previous ones, resulting in a
bounded resolution. As a further development, the opti-
mized poses could be provided in feedback to the submap
matching module, achieving more accurate constraints by
starting from already better poses. The CMAP stack will
be intensively tested in the months to come as the CoRob-
X project enters its final phase, providing a larger variety
of scenarios and datasets to test it and further improve it.
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