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ABSTRACT

Dynamic Targeting (DT) will enable future Earth Ob-
serving instruments to intelligently reconfigure and point
instruments to dramatically enhance science return. In
this work we present a simulation study of DT for cloud
avoidance. To this end we have developed several al-
gorithms from Operations Research and Artificial Intel-
ligence/heuristic search. We benchmark these algorithms
and show that DT is a powerful tool with the potential to
significantly improve science yield.

Key words: Dynamic Targeting, Artificial Intelligence,
Cloud Avoidance.

1. INTRODUCTION

While a new generation of unprecedented miniaturized
Earth observing instruments has emerged, fundamental
physics of remote sensing dictates that high spatial reso-
lution at reduced size (and therefore power, cost) forces
reduced swath. This places a premium on measurement
on acquiring the highest science value data enabled by
pointable instruments.

Dynamic targeting (DT) can improve the efficiency of
conventional expensive narrow swath instruments. DT
uses information from a lookahead sensor to identify tar-
gets for the primary sensor which can then be pointed or
reconfigured to improve science yield (Figure 1). DT also
addresses a major inefficiency in many Earth observing
missions, where the majority of their data is not usable
due to cloud cover and other poor observing conditions.
Additionally, for other instruments that may be limited by
energy, data volume, or configuration, DT can be used to
best operate an instrument by turning on only when high
value targets are detected (to conserve energy), varying
compression/summarization (to conserve data volume),
and control other instrument settings (gain, frequency,
chirp rate, etc.).

DT is applicable across a wide range of missions and will
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Figure 1. Dynamic targeting uses information from a
lookahead sensor to identify targets for the primary in-
strument in order to improve science yield.

enable far better coverage of transient phenomena. When
overflying storm systems, a DT radar such as being devel-
oped in the SMICES project as part of the NASA Instru-
ment Incubator Program (IIP) [1] could be directed to-
wards the deep convective core to increase measurement
of these targets of interest. The radar configuration could
be adjusted based on the type of target and type of sci-
ence study to further improve return. And the instrument
could track a single cell for an entire overflight to provide
fine temporal scale evolution for 8-10 minutes overflight
in low Earth orbit. Alternatively, a forward looking sen-
sor could detect areas of high gradient in temperature and
moisture and direct lidar or radar to search for planetary
boundary layer phenomena. When imaging the Earth’s
surface, or even an atmospheric column (such as OCO-
2 and OCO-3), clouds can interfere with measurement.
In these cases, lookahead cloud detection (e.g. such as
Thompson et al. [2]) with DT could be used to target
around clouds [3] to improve science return.

In this work we present a simulation study focused on
using DT for cloud avoidance. To this end we have de-
veloped several algorithms that draw from a rich heritage
of methods including Operations Research, as well as Ar-
tificial Intelligence/heuristic search methods. We bench-
mark these algorithms and show that DT is a powerful
tool for improving science return.
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Figure 2. MODIS cloud fraction dataset and simulated satellite orbit with a 65 degree inclination. The simulation consists
of 36,000 time steps spanning 10 hours.

2. RELATED WORK

Rapid cloud screening has been used onboard aircraft to
remove and compress clouds to reduce data volume [2].
Another example of cloud avoidance work has been com-
pleted on TANSO-FTS-2 where intelligent targeting is
utilized to minimize observations compromised by the
presence of clouds [4]. Hasnain et al. use greedy and
a graph-search based algorithms to select the most clear
sections of sky during a flyover [3]. Similar work in-
cludes the Smart Ice Cloud Sensing (SMICES) small-
sat concept, a radar application that intelligently targets
storms and clouds [5, 1]. It operates in a similar man-
ner by picking an area in the instrument field of view
to analyze. SMICES targets images at a rapid rate, on
the order of seconds. Moreover, SMICES uses multiple
cloud labels to identify different targets instead of the la-
bels used for cloud avoidance (cloud vs. clear). This
gives SMICES flexibility on which targets to analyze and
allows scientists to tailor its algorithm to target the clouds
that best align with their scientific interests. Finally, Can-
dela et al. [6] build upon the SMICES work for tracking
storm features; they conduct a study with satellite mis-
sion analysis tools in conjunction with Global Precipita-
tion Measurement (GPM) data products [7].

3. SIMULATION STUDY

The simulation study consists of an Earth science satellite
whose mission is to minimize cloud obscured observa-
tions. The satellite has two onboard instruments: a radar
with a narrow swath that serves as the primary instru-

ment, and a secondary sensor with a wider field of view
that can only be used for lookahead. General Mission
Analysis Tool (GMAT) [8], an open-source space mission
analysis tool, was used to simulate and generate realis-
tic satellite trajectories. We simulated a low Earth orbit
with a 65 degree inclination, a 400 km altitude, an ap-
proximate period of 95 minutes, and an eccentricity of 0
(Figure 2). Most of the previous parameters were chosen
to resemble the ones for the SMICES satellite concept
[5, 1]. In a similar way, the primary instrument swath
is of 217 km (cross-scan is ±15◦), while the lookahead
sensor range is of 592 km (cross-scan is ±45◦). We also
used a duty cycle of 20% and each measurement from
the primary instrument consumes 5% while the satellite
battery recharges 1% at each time step. The experiment
consists of 36,000 time steps at 1 seconds per time step,
spanning a total of 10 hours. The simulations were con-
ducted using a MacBook Pro 16 (2019) computer with an
Intel i9 processor (2.3 GHz octacore) and 32 GB of RAM
memory.

In order to identify clear and cloudy skies at a global
scale we used data from the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) [9]. Specifically, we
employed cloud fraction products from the Aqua satel-
lite [10]. Cloud fraction is the portion of each pixel that
is covered by clouds. It is derived from the 1-km-pixel
resolution cloud mask product made from radiance and
reflectance measurements of Earth. These data are daily,
global products with a 0.1◦ spatial resolution (Figure 2).
Time interpolation was used to better capture the evolu-
tion of clouds over time. Similarly to cloud detection for
Landsat 8 images [11], we use cloud fraction to define
three different cloud categories: cloudy, mid-cloudy, and
clear (Table 1).
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Figure 3. Dynamic targeting algorithms for storm feature tracking. The random and greedy nadir algorithms are exclu-
sively aimed at nadir (a and b). The greedy lateral algorithm can collect samples along the cross-path direction (c). The
greedy radar algorithm has an even wider field of view, but is restricted by the primary instrument’s swath (d). The greedy
window algorithm leverages a lookahead sensor with a farther reach to better allocate resources for future measurements
(e). The dynamic programming approach has a full lookahead (assuming the path is finite) and achieves optimality via
backward induction, however it cannot be deployed using realistic instrument and computational resources (f).

Table 1. Cloud classification thresholds.

Clear cloud fraction is less than 0.35
Mid-cloudy cloud fraction between 0.35 and 0.65

Cloudy cloud fraction is over 0.65

4. DYNAMIC TARGETING ALGORITHMS

In this work we compare six different algorithms (Fig-
ure 3). Four of them are dynamic targeting algorithms
that are based on greedy heuristics and can be easily de-
ployed onboard aircraft and spacecraft. These are based
on the intelligent targeting methods recently tested for
SMICES [1]. The other two methods provide lower and
upper bounds on performance.

4.1. Random

The random algorithm (1) targets the pixel under nadir
20% of the time to ensure that it meets energy require-
ments. It is representative of most targeting methods on
current Earth Science satellites. It is indifferent to the
clouds it is flying over and will most likely miss many

Algorithm 1: Random
input : Results: array of analyzed pixel values,

Radar picture: knowledge window of the
simulation, SOC: state of charge {0-100}

output: Results: array of analyzed pixel values,
SOC: state of charge {0-100}

1 i← randomvalue(0 < i < 1)
2 if i ≤ 0.2 then
3 results←value of pixel at nadir
4 SOC ← SOC − 4%
5 else
6 results← value of radar turned off
7 SOC ← min(SOC + 1%, 100%)
8 return Results, SOC

clear pixels. It provides a lower bound on performance.

4.2. Greedy Nadir

The greedy nadir algorithm (2) improves upon the ran-
dom algorithm by controlling when the primary instru-
ment is turned on. It utilizes the system’s current state
of charge together with the cloud under nadir to deter-
mine when the primary instrument is turned on instead



Algorithm 2: Greedy Nadir
input : Results: array of analyzed pixel values,

Radar picture: knowledge window of the
simulation, SOC: state of charge {0-100}

output: Results: array of analyzed pixel values,
SOC: state of charge {0-100}

1 if SOC == 100% then
2 results← value of pixel under nadir
3 SOC ← SOC − 4%
4 else if SOC ≥ 4% then
5 if nadir pixel == clear then
6 results← value of pixel under nadir
7 SOC ← SOC − 4%
8 else if nadir pixel == mid-cloud then
9 r ← randomvalue(0 < i < 1)

10 if r > 0.5 then
11 results← value of pixel under nadir
12 SOC ← SOC − 4%
13 else
14 results← value of radar turned off
15 SOC ← min(SOC + 1%, 100%)
16 else
17 results← value of radar turned off
18 SOC ← min(SOC + 1%, 100%)
19 else
20 results← value of radar turned off
21 SOC ← min(SOC + 1%, 100%)
22 return Results, SOC

of making random decisions. This allows the system to
save energy to collect clear sky measurements. Note that
mid-clouds under nadir are not always sampled to save
even more energy for clear observations. Additionally,
the algorithm performs atmospheric profiling only if the
state of charge (SOC) is 100% in order to reduce cloudy
observations.

4.3. Greedy Lateral

The greedy lateral algorithm (3) improves on the greedy
nadir algorithm by allowing the primary instrument to an-
alyze pixels along the cross-path direction. The two im-
portant factors in determining when the primary instru-
ment is turned on is the state of charge and the best pixel
along the lateral band. This is resolved by searching for
the highest valued cloud with a tiebreaker going to the
pixel that is closest to nadir.

4.4. Greedy Radar

The greedy radar algorithm (4) expands its view along the
path of the satellite to include the entirety of the primary
instrument’s reachability. The SOC determines which
pixels are able to be analyzed, and a simple greedy search
inside of the primary instrument’s reachability finds the
clearest pixel with a tiebreaker going to the one that is

Algorithm 3: Greedy Lateral
input : Results: array of analyzed pixel values,

Radar picture: knowledge window of the
simulation, SOC: state of charge {0-100}

output: Results: array of analyzed pixel values,
SOC: state of charge {0-100}

1 lateral view ← pixels that make up lateral band
across nadir within radar’s view

2 best← lat search(lateral view) // best
pixel in the lateral field of view

3 if SOC == 100% then
4 results← best
5 SOC ← SOC − 4%
6 else if SOC ≥ 4% then
7 if best == clear then
8 results← best
9 SOC ← SOC − 4%

10 else if best == mid-cloud then
11 r ← randomvalue(0 < i < 1)
12 if r > 0.5 then
13 results← best
14 SOC ← SOC − 4%
15 else
16 results← value of radar turned off
17 SOC ← min(SOC + 1%, 100%)
18 else
19 results← value of radar turned off
20 SOC ← min(SOC + 1%, 100%)
21 else
22 results← value of radar turned off
23 SOC ← min(SOC + 1%, 100%)
24 return Results, SOC

closest to nadir. This method also performs atmospheric
profiling only when the SOC is 100%.

4.5. Greedy Window

The greedy window algorithm (5) expands its view using
the lookahead sensor, meaning that it is able to account
for future clouds along the radar’s path. The algorithm
first calculates how many pixels can be analyzed based
on the current state of charge. It then counts the number
of clear pixels present within the knowledge window. The
power is then allocated for all of the clear pixels, followed
by mid-cloudy, and then any leftover power is reserved
as free. The highest valued pixel within the radar’s view
that has allocated power is imaged. The tiebreaker still
goes to the pixel closest to nadir. The pixel under nadir is
imaged if only clouds are within the radar’s view, there is
free power, and there is a sufficient SOC (100%).

4.6. Dynamic Programming

The dynamic programming (DP) algorithm (6) is opti-
mal and provides an upper bound on performance for the



Algorithm 4: Greedy Radar
input : Results: array of analyzed pixel values,

Radar picture: knowledge window of the
simulation, SOC: state of charge {0-100}

output: Results: array of analyzed pixel values,
SOC: state of charge {0-100}

1 radar view ← pixels that make up radar’s range of
possible targets

2 best← radar search(radar view) // best
pixel in the radar’s field of view

3 if SOC == 100% then
4 results← best
5 SOC ← SOC − 4%
6 else if SOC ≥ 4% then
7 if best == clear then
8 results← best
9 SOC ← SOC − 4%

10 else if best == mid-cloud then
11 r ← randomvalue(0 < i < 1)
12 if r > 0.5 then
13 results← best
14 SOC ← SOC − 4%
15 else
16 results← value of radar turned off
17 SOC ← min(SOC + 1%, 100%)
18 else
19 results← value of radar turned off
20 SOC ← min(SOC + 1%, 100%)
21 else
22 results← value of radar turned off
23 SOC ← min(SOC + 1%, 100%)
24 return Results, SOC

previous sampling methods. Its lookahead comprises the
whole path to be traversed, which is assumed to be fi-
nite. The states are given by the location of the satel-
lite and the SOC, while the actions consist of the pixels
that are within the primary instrument’s reach. This algo-
rithm uses backward induction to determine the optimal
sequence of actions. The objective function is additive
and the reward values for each cloud type are as follows:
no sample 0, cloudy 1, mid-cloudy 1 × 104, and cloudy
1×108. These values virtually eliminate tradeoffs among
different cloud types. Finally, the tiebreaker goes to pix-
els closest to nadir. Unfortunately, this algorithm cannot
be deployed in most cases onboard aircraft or spacecraft
for the following reasons. First, it is computationally ex-
pensive and planning requires minutes or hours depend-
ing on the total path length; second, a lookahead sensor
with such range is unrealistic. However, this algorithm is
valuable for evaluation and comparison purposes.

5. RESULTS

Overall we observe that DT methods are good at choosing
when to save energy and when to collect measurements
(Figure 4). Results indicate that DT delivers a significant

Algorithm 5: Greedy Window
input : Results: array of analyzed pixel values,

Radar picture: knowledge window of the
simulation, Lookahead picture: secondary
instrument’s observation, SOC: state of
charge {0-100}

output: Results: array of analyzed pixel values,
SOC: state of charge {0-100}

1 best clear, best mid← radar search(radar view)
// Returns the best clear pixel
and the best mid-cloud pixel in
the radar’s field of view that are
closest to nadir

2 free cycles← SOC / 4
3 clears← number of clear pixels in radar picture
4 view clear ← clears > 0
5 clears← clears+number of clear pixels in

lookahead
6 midclouds← number of midcloud pixels in radar

picture
7 view mid← midclouds > 0
8 midclouds← midclouds+number of clear pixels

in lookahead
9 if cycles ≥ 1 then

10 if view clear then
11 results← best clear
12 SOC ← SOC − 4%
13 else
14 cycles← max(0, cycles− clears)
15 if cycles ≥ 1 then
16 r ← randomvalue(0 < i < 1)
17 if view mid & r > 0.5 then
18 results← best mid
19 SOC ← SOC − 4%
20 else
21 if SOC == 100% then
22 results← value of pixel under

nadir
23 SOC ← SOC − 4%
24 else
25 results← value of radar turned

off
26 SOC ← min(SOC+1%, 100%)
27 else
28 results← value of radar turned off
29 SOC ← min(SOC + 1%, 100%)
30 else
31 results← value of radar turned off
32 SOC ← min(SOC + 1%, 100%)
33 return Results, SOC

increase in performance (Table 2). The baseline random
algorithm is always outperformed and tends to observe
too many clouds because it does not use any auxiliary
information. The greedy nadir approach has a better per-
formance, but it is still very constrained. Greedy radar
does a much better job since it can sample from pixels,
however it samples too many mid-clouds. Greedy win-
dow samples fewer mid-clouds because it exploits the



Algorithm 6: Dynamic Programming Algorithm
input : Full path: knowledge window of the

simulation, Nsteps: steps in the full path,
Nactions: number of pixels in radar’s view,
SOC0: initial state of charge {0-100}

output: Results: array of analyzed pixel values
// Initialization

1 Q← 0Nsteps×101×Nactions // zeros array
// Compute optimal plan
// Move backward

2 for step← Nsteps − 1 to 0 do
3 for SOC ← 0 to 100 do
4 for action← 0 to Nactions + 1 do

// Simulate
5 value, SOC ′, reward←

sample(step, SOC, action)
// Update Q

6 Q(step, SOC, action)←
reward+maxa Q(step+ 1, SOC ′, a)

7 end
8 end
9 end
// Execute optimal plan

10 SOC ← SOC0 // set to initial SOC
// Move forward

11 for step← 0 to Nsteps do
// Select optimal action

12 action⋆ ← argmaxa Q(step, SOC, a)
// Simulate

13 value, SOC, reward←
sample(step, SOC, action⋆)
// Store results

14 results← value
15 end
16 return Results

information from the lookahead sensor to save energy
more effectively to sample more clear pixels. DP, as ex-
pected, outperforms the rest as it is omniscient and op-
timal. Nonetheless, despite a substantially more limited
lookahead, greedy window has a performance that is de-
cently close to the optimum (∼ 80%). Regarding the al-
gorithms’ computation times, we see they are quite fast
since they are in the order of microseconds (Table 3). The
notable exception is DP as it is slower by several orders
of magnitude, which is to be expected since it is optimal
and uses an unrealistically far lookahead.

6. CONCLUSIONS AND FUTURE WORK

This work discusses DT as a powerful approach that
leverages lookahead sensor data to optimize the utiliza-
tion of a primary sensor, commonly subject to operation
constraints, and thus improve science return. We describe
several DT algorithms and test them via a realistic sim-
ulation study that involves cloud avoidance. The exper-
imental results indicate that DT is a very promising ap-

cloud = 0 mid-cloud = 1 clear = 2

Figure 4. Example of the greedy window algorithm for
cloud avoidance. Left: It saves energy for clear observa-
tions in the near future, in this case within the lookahead
sensor range. Right: A few time steps later, the algorithm
uses the saved energy to collect measurements now within
the primary instrument’s reach.

Table 2. DT algorithms’ performance as percentages
of analyzed clouds per class. Random and DP provide
lower and upper bounds on performance, respectively.

Algorithm Off Cloud Mid-Cloud Clear
Random 80.52% 12.93% 5.55% 0.99%
G. Nadir 80.00% 11.20% 7.66% 1.14%

G. Lateral 80.00% 10.35% 8.06% 1.59%
G. Radar 80.00% 9.81% 8.07% 2.12%

G. Window 80.00% 9.83% 7.57% 2.61%
DP 79.91% 9.73% 7.08% 3.28%

Table 3. Average and maximum computation times in mi-
croseconds per time step for each algorithm.

Random Nadir Lateral Radar Window DP
Average

Time
(µs)

1.9 2.1 4.7 5.7 10.2 162658.6

Max.
Time
(µs)

9.5 13.0 24.8 26.8 27.5 197998.7

proach. When comparing the best performing algorithm,
greedy window, against the baseline random algorithm,
significantly fewer clouds are sampled while respecting
energy constraints. Also, its computation time is quite
fast. Furthermore, it tends to have a competitive perfor-
mance when compared to the optimal DP method.

Future work will keep improving the realism of our simu-
lation study; for instance, we plan to capture more physi-
cal constraints such as off-nadir measurements with dete-
riorating quality. Further research will continue to inves-



tigate the advantages of DT using other cloud and storm
data sets. Finally, working closely with application scien-
tists and specialists, we will refine use cases and quantify
performance improvement for other application domains
such as tracking volcanic targets.
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