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ABSTRACT

Future space missions can benefit from processing im-
agery onboard to detect science events, create insights,
and respond autonomously. This capability can enable
the discovery of new science. One of the challenges to
this mission concept is that traditional space flight hard-
ware has limited capabilities and is derived from much
older computing in order to ensure reliable performance
in the extreme environments of space, particularly radia-
tion. Modern Commercial Off The Shelf (COTS) proces-
sors, such as the Movidius Myriad X and the Qualcomm
Snapdragon, provide significant improvements in small
Size Weight and Power (SWaP) packaging. They offer
direct hardware acceleration for deep neural networks,
which are state-of-the art in computer vision. We de-
ploy neural network models on these processors hosted
by Hewlett Packard Enterprise’s Spaceborne Computer-2
onboard the International Space Station (ISS). We bench-
mark a variety of algorithms on these processors. The
models are run multiple times on the ISS to see if any er-
rors develop. In addition, we run a memory checker to
detect radiation effects on the embedded processors.

Key words: Deep Learning, Edge Processing, Space
Applications, Machine Learning, Artificial Intelligence,
COTS embedded processors.

1. INTRODUCTION

Deep space missions have limited contact with ground
operations teams, making it hard to account for a dy-
namic environment. This is due to the limited number
of Earth-based ground communication stations and geo-
metric constraints. Surface missions are typically com-
manded daily or every few days, and orbiters are typi-
cally commanded only weekly. Onboard autonomy can
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mitigate this by enabling spacecraft to autonomously re-
spond to a changing environment in between command
cycles. But traditional space flight hardware has very
limited computational capabilities. A new generation of
embedded processors, such as the Intel Movidius X [1],
and the Qualcomm Snapdragon 855 [2], enable fast on-
board inference by supporting neural networks directly in
hardware [3]. This technology promises more powerful
onboard autonomy with edge processing.

We benchmark deep learning inference on Movidius
Myriad X and Snapdragon processors onboard the ISS.
Hosting of these processors is enabled by Spaceborne
Computer-2 (SBC-2) by Hewlett Packard Enterprise [4].
Previously, these models have been deployed on the
ground. We run inference with these models at various
times to see if errors occur, and in addition, run algo-
rithms specifically designed to find memory errors, to get
an idea of possible radiation effects.

The ISS deployment is a step towards running such mod-
els operationally on a satellite, lander or rover. This
would enable onboard data analysis, targeted downloads,
commanding of space assets, and onboard science inter-
pretation.

2. PROCESSORS

The Qualcomm Snapdragon 855 has multiple subsys-
tems, which include a CPU, GPU, Compute Digital Sig-
nal Processor (DSP), and an AI Processor (AIP). The
CPU subsystem is made up of a heterogeneous cluster
of 8 ARM cores. One core operates at 2.8 GHz, three at
2.4 GHz, and four at 1.8 GHz. The Snapdragon also in-
cludes an Adreno GPU, which operates at 585 MHz and
is geared for floating-point processing. In general, GPUs
have been used widely for training and inference of neu-
ral networks, due to their parallelizable nature, and have
allowed for development of larger and more accurate net-
works. However, the Snapdragon Hexagon DSP is even



faster for inference than its GPU, due to its higher core
speed and long vector length SIMD (Single Instruction
Multiple Data) instructions for fixed-point computation.
The DSP includes four cores operating at 1.2-1.3 GHz.
The AIP adds accelerated computation for specific, com-
monly utilized, neural network functions. We compare
results using the CPU, GPU, DSP, and Neural Process-
ing Unit (NPU), which may include computation with
the AIP; the NPU is the API that can be used to select the
right component for a given task. The CPU and GPU sup-
port floating point numbers, while the DSP/NPU support
fixed-point only and thus models must be quantized [2].
For more information about the Snapdragon 855, please
see [5]. Snapdragon processors have been used in vehi-
cles, drones, and even the Mars Ingenuity Helicopter and
base station [6].

The Myriad X Vision Processing Unit (VPU) features a
Neural Compute Engine, which is a dedicated hardware
accelerator for performing neural networks inference, as
well as VLIW SIMD cores for accelerating computer vi-
sion algorithms. The VPU is programmable using Ubot-
ica’s CVAI Toolkit™. Half precision floating point is sup-
ported. The previous generation VPU, the Myriad 2, flew
on the on the PhiSat-1 satellite, a CubeSat mission from
the European Space Agency [3].

We compare results from the Snapdragon and Myriad
processors with an NVIDIA Jetson Nano and test lap-
top, both on the ground. The NVIDIA Jetson Nano fea-
tures a 128-core NVIDIA Maxwell™ GPU and Quad-
core ARM® A57 CPU that operates at 1.43 GHz. The
test laptop is a 2019 MacBook Pro, with a 2.4 GHz and
8-Core Intel i9 processor, running Ubuntu 18.04 in a
docker container. For future work, we plan to benchmark
with two additional more traditional ground testbed pro-
cessors: Rad750 [7] (used on many prior missions) and
Sabertooth [8] (which is being developed for future mis-
sions).

3. EXPERIMENTAL SETUP AND ISS DEPLOY-
MENT

Two Snapdragon 855 development boards (with radios
disabled) and two Movidius Myriad X Processors were
integrated with the HPE Spaceborne Computer-2, which
was launched on February 20th, 2021, as part of the
Cygnus NG-15 resupply mission to the ISS. Uplinks are
possible periodically to load new software. An additional
two Snapdragon 855 boards and two Myriad X Proces-
sors were included in HPE’s ground testbed.

We port trained deep learning models to formats that
can be run on the Myriad X and/or the Snapdragon, and
test locally on these processors. Snapdragon deep learn-
ing models are ported using the Qualcomm Neural Pro-
cessing Software Development Kit [9]. Myriad models
are ported using OpenVINO [10] and the Ubotica CVAI
Toolkit [11]. See Figures 1 and 2 for pictures of our local
hardware.

Figure 1. Movidius Myriad X.

Figure 2. Snapdragon 855 Development Board.

Once those models have been verified, JPL runs these
models on the HPE Ground Testbed, and then sends HPE
a test harness script to run. HPE tests on their Flight
Testbed (ground) before deploying on SBC-2 on the ISS.
Results are then sent back to JPL for interpretation.

4. PRIOR BENCHMARKING WORK

In [12], we show benchmarks for a set of deep learn-
ing models. We show energy and inference time on the
Snapdragon and Myriad X for Mars HiRISENET, which
is used to classify images collected by the High Resolu-
tion Imaging Experiment (HiRISE) instrument onboard
the Mars Reconnaissance Orbiter [13]. We found that
the low SWaP processors had only small errors (from the
quantization), with over 10x speed improvement com-
pared with the Snapdragon CPU. Compared to our test
laptop (MacOS 2019, 2.4 GHZ, 8-core), which required
2.3 J (includes monitor and other externals), the Snap-
dragon CPU required 0.5 J, but the DSP only required
0.016 J, the Snapdragon NPU required 0.014 J, and the
Myriad X required 0.032 J.



In addition to Mars HiRISENET, we benchmarked an
image segmentation model trained on imagery from
the Mars Science Laboratory (MSL) rover’s Navigation
Cameras [14]. The Snapdragon DSP was not able to
use a pre-quantized model, and this lead to high errors
(9.3% missed pixels). Also, the model had incompati-
ble layers with the Myriad X. Coming back to Earth, we
benchmarked a UAVSAR model trained to detect flood-
ing [15]. Error rates on the Snapdragon DSP/NPU and
Myriad X were small, with greater than 6x speed im-
provement over the test laptop. We also benchmarked
a single pixel model for super resolution [16] but found
this ran slower on the low SWaP processors, likely due to
the net’s small size and single-pixel nature.

In addition to our models for specific applications, we
benchmarked a set of standard deep learning models for
classification [17]. Transfer learning from pre-trained
models is often used for model development, so these re-
sults may help inform model choice.

In this paper, we present results for additional models
more recently tested. We also present results from mem-
ory check tests.

5. DEEP LEARNING MODELS AND BENCH-
MARKS

This paper shows benchmarked results for models trained
on Mars and Earth-based imagery. The Mars imagery
in this paper is from the MSL rover’s science cameras,
as opposed to the navigation cameras as in our prior
work [12]. For Earth-based models, we look at a model
for cloud classification, a model that predicts mixtures of
coral, algae, and sand, as well as a segmentation model
to detect ships in the ocean.

5.1. Mars MSLNets

The NASA Planetary Data System (PDS) maintains
archives of data collected by NASA missions, and pro-
vides access to millions of images of planets, moons,
comets, and other bodies to the general public. This in-
cludes images from the Mars Science Laboratory (MSL)
Curiosity rover’s science cameras. Users can interac-
tively search these images for classes of interest using
the PDS Image Atlas, which use the predictions from
MSLNet (https://pds-imaging.jpl.nasa.gov/search/).

MSLNet is used to classify images collected by the
Mast Camera (Mastcam) and the Mars Hand Lens Im-
ager (MAHLI) instruments mounted on the MSL Curios-
ity rover. Mastcam is a two instrument suite with left
and right-eye cameras, and MAHLI is a single focus-
able camera located at the end of the rover’s robotic arm.
MSLNet is actually made up of two networks: MSLNet1
and MSLNet2. MSLNet1 is trained on 19 classes, includ-
ing float rock, light-toned veins, sun, wheel, and wheel

(a) Arm cover (b) Dist. landscape (c) Drill hole

(d) Float rock (e) L.-toned veins (f) Other rover part

(g) Sun (h) Wheel (i) Wheel tracks

Figure 3. Example imagery from MSL Curiosity Rover’s
science cameras [13].

tracks [13]. If MSLNet1 predicts ”other rover parts”, the
image will be passed through MSLNet2 for finer grained
classification of 24 possible classes [18]. See Figure 3 for
some example images with their class.

Currently, these classifiers are used only on the ground
by the PDS Image Atlas, but running these classifiers di-
rectly onboard the rover could improve data collection
and enable autonomous tasking.

MSLNets were built with transfer learning from
AlexNet [19] using Caffe. Test images were 227x227
pixels and RGB. Models that are run on the Snapdragon
DSP/NPU must be quantized (fixed point), and on the
Myriad X must be transformed to half precision floating
point, both of which can lead to a classification discrep-
ancy. Models are quantized using a separate validation
dataset and quantization discrepancy errors are reported
on a held-out test set.

Benchmarking results are similar for both classifiers, as
they have the same model structure. Table 1 shows errors
and timing on a test set of 602 images, relative to a Linux
run on the test Mac laptop. Inference time is per image.
On the test laptop, the time reported is walltime.

Table 2 shows quantization discrepancy errors and timing
for MSLNet2, on 1,305 testset image chipouts.

The Snapdragon GPU has 5x speed improvement from
the Snapdragon CPU, and the DSP/NPU are 2x faster
than the GPU. The Myriad speed is similar to the Snap-
dragon GPU. Errors were low for all processors.

Snapdragon models have been run for 9 iterations on the



Table 1. Mars MSL1 Classifier Benchmarks
Processor Errors Inference Time

MacBook Reference - 65.4 ms
Snapdragon CPU 0 86.6 ms
Snapdragon GPU 1 (0.2%) 16.2 ms
Snapdragon DSP 15 (2.5%) 7.6 ms
Snapdragon NPU 15 (2.5%) 7.6 ms

Myriad X 3 (0.5%) 16.1 ms
Jetson Nano CPU 2 (0.33%) 1122ms
Jetson Nano GPU 2 (0.33%) 286ms

Table 2. Mars MSL2 Classifier Benchmarks
Processor Errors Inference Time

MacBook Reference - 69.1 ms
Snapdragon CPU 0 81.6 ms
Snapdragon GPU 1 (0.1%) 16.2 ms
Snapdragon DSP 27 (2.1%) 7.6 ms
Snapdragon NPU 27 (2.1%) 7.6 ms

Myriad X 7 (0.5%) 16.1 ms
Jetson Nano CPU 0 1109ms
Jetson Nano GPU 1 (0.1%) 242ms

ISS. Myriad models have been run for two iterations on
the ISS, 3 times for each iteration, for a total of 6 times.
No discrepancies have been found between ground and
ISS runs of these classifiers.

5.2. Single Pixel Cloud Classifier

SMICES is an instrument concept for a ”smart” deep
convective storm hunting radar [20] [21] [22]. In the
SMICES concept, a lookahead radiometer acquires data
to detect deep convective ice storms and a radar is used
to study detected storms in greater detail. The SMICES
machine learning classification application [23] classi-
fies simulated radiometer data into five separate cloud
types to identify the location of the deep convective
storms. The application runs a random decision forest
(RDF), multi-layer perceptron (MLP), support vector ma-
chine (SVM), and naı̈ve Bayes Gaussian classifiers over
198,016 pixels with 8 bands of radiance. Each classifier is
run on the Snapdragon CPU in a single threaded python
application and compared with performance on a refer-
ence laptop and Jetson Nano. Note that the deep learning
classifiers here were not ported with the Qualcomm Neu-
ral Processing Software Development Kit (SDK), which
is what we use for all other models, but instead are ported
using the Python-for-Android routine by Kivy [24]. The
runtimes for each classifier are listed in Table 3. Fu-
ture work involves porting with the Qualcomm SDK and
benchmarking on the Snapdragon GPU, DSP, and AIP.

The SMICES classifiers have been run 9 times on the ISS,
and we have found no discrepancy between ground and
ISS runs.

Table 3. SMICES Classifier Run Times
Classifier Reference Snapdragon CPU Nano

RDF 0.39 0.5 s 0.5 s
MLP 0.31 0.6 s 1 s
SVM 365 s 1316.7 s 2719 s
Bayes 0.06 s 0.3 s 0.3 s

5.3. Spectral Unmixing

Earth and planetary sciences often rely upon the analysis
of spectroscopic data. Measured signals are called spec-
tra and contain recognizable features or patterns that can
be used for composition analysis since different materials
reflect, emit, or absorb energy in unique ways throughout
the electromagnetic spectrum.

This work addresses spectral unmixing, an approach for
estimating the proportions or fractional abundances of at
least two components in each spectrum (e.g., 60% mate-
rial A and 40% material B). Unmixing is more general
than conventional classification as it models mixtures of
classes, as opposed to a single class (e.g. simply all ma-
terial A or all material B).

We benchmark the Deep Conditional Dirichlet Model
(DCDM) [25], which is a probabilistic deep learning
model for learning mixtures of classes. It has been used
for spectral unmixing and it can model both linear (non-
intimate, i.e. that the signal is the weighted sum by abun-
dance of the each element signature), and nonlinear (in-
timate) mixtures. This method treats each pixel individu-
ally, without looking at it’s surrounding neighbors. As a
probabilistic method, it is robust to noise and also models
uncertainty propagation in the data.

We demonstrate performance using airborne data from
the NASA Earth Venture Suborbital-2 (EVS-2) Coral
Reef Airborne Laboratory (CORAL) mission [26]. The
CORAL mission focused on mapping three benthic
cover classes: coral, algae, and sand. Data is from
the NASA/JPL Portable Remote Imaging SpectroMeter
(PRISM) (Figure 4). We employ two flight lines from
Heron Island, Australia on 17 September 2016 and Ka-
neohe Bay in Oahu, Hawaii on 6 March 2017. We use
benthic reflectance products since they provide invari-
ance to water column properties. These products have
a 420–680 nm spectral range and consist of 92 bands.
The abundance maps were estimated and validated by
the CORAL mission with photomosaics collected in the
field [27]. The dataset that was used for the DCDM
consists of 12,000 representative PRISM spectra together
with their corresponding coral, algae, and sand fractional
abundances. The dataset split was performed pseudo-
randomly and as follows: 80% train, 10% validation, and
10% test.

Benchmarking results are shown in Table 4. We show
performance on the Snapdragon and test laptop, running
in batch mode (all pixels passed in at once). Runtime
is per-pixel, and MacBook time is wall time. The quan-
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Figure 4. Coral, algae, and sand abundance maps of
Heron Island (top) as predicted by the DCDM using
PRISM spectra (bottom).

Table 4. DCDM Benchmarks
Processor RMSE Inference Time

MacBook Reference - 0.005 s
Snapdragon CPU 0 0.015 s
Snapdragon GPU 0 0.270 s
Snapdragon DSP 0.05 0.039 s
Snapdragon NPU 0.05 0.039 s

tization discrepancy error is given as root mean square
error (RMSE). For this model, the Snapdragon CPU is
the faster than the other sub-systems, most likely due to
the small size of the model and single-pixel nature. This
model has been run once on the ISS, and produced the
same results as in the ground-based run.

5.4. Ship Segmentation

The purpose of the Ship Segmentation model is to detect
ships in satellite imagery.

The chosen approach uses a Python+PyTorch framework
to train a UNet+MobileNetV2 segmentation network.
UNet architectures [28] are often used for solving bi-
nary semantic segmentation problems. When compared
with other encorers, MobileNetV2 [29] has fewer pa-
rameters, which makes it easier to train. Furthermore,
having a good feature extractor such as MobileNet helps
the model to converge much faster during training. The
model used pre-trained weights available on the original
repository [30].

The dataset chosen is named Airbus Ship Detection
dataset, which contains 150,000 JPEG images (768x768
pixels) extracted from Satellite pour l’Observation de
la Terre (SPOT) satellite imagery at 1.5 meters resolu-
tion [31]. SPOT Image is a worldwide company that
focuses on the distribution of products and services us-
ing imagery from Earth observation satellites and works

Figure 5. Sample input image and segmented output im-
age for the Ship Segmentation model.

through a network of 30 direct receiving stations, han-
dling images acquired by the SPOT satellites. Images
feature tankers, commercial and fishing ships of vari-
ous shapes and sizes. 70% of the images do not con-
tain ships, and those that do may contain multiple ships,
which may differ in size (sometimes significantly) and
be located in open sea, at docks, at marinas, etc. 231,723
ship masks were included among 192,556 images. Masks
were stored using Run-Length encoding format, allowing
segmentation solutions. Images were resized (to 320x320
pixels) for the training stage of this model.

Dataset split was performed pseudo-randomly and the
following partitions were created:

• train 90% : 173,302 frames

• val 5% : 9,627 frames

• test 5% : 9,627 frames

The model achieved a dice score of 0.918 over the vali-
dation dataset, showing an almost perfect score on large
ships. This proved that the image-level information be-
tween a ship and the background (sea, shore, beach, etc.)
is clearly discernible to this specialised neural network
for binarised image segmentation. A sample image and
the segmented output is shown in Figure 5.

When deployed on the ISS, a fixed dataset was used with
expected results provided. The inference result for each
image in the dataset was compared against the expected
result. The model has been run on the ISS for two iter-
ations, with 3 times each iteration, and no discrepancies
between the achieved and expected inference results were
recorded.

For deployment to the Myriad X, the model is 14.8MB
in size. A comparison of the performance on the Myriad
X, the Myriad 2 (previous generation Myriad) and a CPU
are provided in Table 5.

6. MEMORY CHECKERS

We run memory checkers on both the Myriad and Snap-
dragon to measure the impact of radiation effects on their



Device Image Size (pixels)
160x160 320x320 640x640 768x768

Myriad 2 13.60 4.70 1.26 0.89
Myriad X 23.44 7.56 1.91 1.18

Intel Core i7 59.01 22.64 6.11 4.11

Table 5. Ship Segmentation Performance. Provided re-
sults are in Frames per Seconds

memories. The within container Snapdragon and Myriad
radiation levels on the ISS are expected to be less than on
an Earth Orbiting spacecraft due to the ISS and SBC-2
container acting as radiation shielding.

6.1. Myriad Memory Checker

The memory system on the Myriad X consists of two
main sections - 2MB CMX (Connection MatriX) mem-
ory and 512MB of DDR (Double Data Rate) memory
consisting of 227 32-bit addresses. The addresses range
from 0x80000000 to 0x9FFFFFFF. As each address is
a 4-byte/32-bit value, the addresses increment by 0x4.
For example, the first four addresses are 0x80000000,
0x80000004, 0x80000008, 0x8000000C etc.

The purpose of these tests is to determine the health of
the DDR Memory on board the Myriad X. Due to the im-
pact of radiation the elements of the DDR can become
corrupted - either the actual memory or the memory ad-
dressing. Corrupted memory presents itself in the form
of a DDR address not maintaining its correct address. A
common form of corruption is that a bit within a memory
address becomes ”stuck” as either a 0 or a 1, and even if
it is written with the opposing value it will not maintain
that value and will always be read back as the stuck value.
These memory errors can lead to incorrect inference re-
sults, and thus it is important to periodically monitor the
health of the DDR. Each of the tests executed as part of
this memory test suite consists of two stages - a write
stage and a read stage. These stages may be repeated and
are described below:

• Write Stage - This stage consists of writing the en-
tire DDR Memory with fixed values (these values
depend on which test is being executed).

• Read Stage - This stage consists of reading back the
entire contents of the DDR Memory and comparing
the values with the expected results.

Three tests are executed as part of the DDR Memory test
suite, with each exercising the memory in a slightly dif-
ferent manner. Each of the tests is described below:

1. Standard - This test writes to each address the ad-
dress itself. For example, 0x80000000 is written as
0x80000000. Once the writing has completed, the

Figure 6. DDR Marching Memory Test. 0’s are rep-
resented by blue blocks and ones by green blocks. The
round number is shown on the right.

memory range that was written to is then traversed,
the value at each address is read back and compared
against the expected value.

2. Flipped Bits - This test writes to each address the
bit-flipped address. For example, 0x80000000 is
written as 0x7FFFFFFF. The checking process is the
same as in test 1.

3. Marching - Multiple read/write cycles are per-
formed for this test. In each cycle, the same value
is written to each address, starting at 0x00000000.
For each subsequent cycle, an additional bit is writ-
ten as 1. In the next subsequent cycle, the process
of flipping the bits back to 0 commences. This pro-
cess continues until all bits are set. The checking
process is different to the first two tests in that at the
start of each round, the value at each address is read
back and compared against the expected value, and
the value for the next round is written back to the
address. A visual representation of the flipping of
the bits for a given addresses is shown in Figure 6.
A selection of the written values for each round is
given below:

• Round 0 - 0x00000000
• Round 1 - 0x00000001
• Round 32 - 0xFFFFFFFF
• Round 33 - 0x7FFFFFFF
• Round 64 - 0x00000000

No memory errors were found when executed on the ISS.

6.2. Snapdragon Memory Checker

The memory system on the Snapdragon 855 HDK is 6GB
LPDDR4x RAM and 128GB USF2.1 Flash. Two mem-
ory tests were developed to check both the static and dy-
namic aspects of the RAM.

The static test operates by allocating three GB of mem-
ory and then waiting one full orbit to check the memory
bits. This equates to checking the memory every 90 min-
utes for any errors. The dynamic memory check is imple-
mented by allocating three gigabytes of memory, check-
ing the memory, and then clearing the memory. This pro-
cess is run as many times as possible. Both of these tests



were run over six orbits, or 540 minutes. No memory
errors have been found.

7. FUTURE WORK

We continue to benchmark new deep learning applica-
tions on the Snapdragon and Myriad X processors within
SBC-2 onboard the ISS. Upcoming models include vol-
cano eruption detection and viable road classification for
disaster relief. We also plan to benchmark results using
Qualcomm’s efficiency toolkit [32], which may improve
network quantization. In addition, we plan to bench-
mark on a the RAD750 [7] and Sabertooth [8] conven-
tional flight processors which requires use of deep learn-
ing packages. Both processors are currently used for
deep-space missions.

8. CONCLUSIONS

We have demonstrated the Myriad X and Snapdragon
COTS processors for faster and lower power deep learn-
ing in space on the ISS. The Myriad X VPU provides
speed improvement over the Snapdragon CPU in all
cases, while the Snapdragon DSP/AIP provides speed im-
provements over the CPU in all cases except the single
pixel network.

We have shown fast and accurate inference with these
COTS processors and hope this will be a step towards
a new era of powerful onboard autonomy with edge pro-
cessing.
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