
 

INFRASTRUCTURE FOR TRAINING AND VALIDATING AI ALGORITHMS IN  

SPACE APPLICATIONS BY MEANS OF DIGITAL TWINS 

André Kupetz(1), Tobias Osterloh(2), Ulrich Dahmen(3), Jürgen Rossmann(4) 
 

(1RIF e.V., Joseph-von-Fraunhofer-Straße 20 – 44227 Dortmund, Germany, andre.kupetz@rt.rif-ev.de 
(2)MMI, RWTH Aachen University, Ahornstraße 55 – 52074 Aachen, Germany, osterloh@mmi.rwth-aachen.de 
(3)MMI, RWTH Aachen University, Ahornstraße 55 – 52074 Aachen, Germany, dahmen@mmi.rwth-aachen.de 

(4)MMI, RWTH Aachen University, Ahornstraße 55 – 52074 Aachen, Germany, rossmann@mmi.rwth-aachen.de 

 

 

ABSTRACT 

A crucial challenge of transferring existing AI-based 

approaches to aerospace applications is the very limited 

availability of reference data. 

This paper presents a novel infrastructure for the 

effective and efficient development, validation, and use 

of modern AI functionalities in space applications. By 

means of comprehensive Digital Twins, which 

incorporate holistic simulation models, the presented 

infrastructure allows to efficiently generate training data, 

to provide decision support methods for the selection and 

optimization of AI-based solutions, and finally supports 

the validation of the behavior of the overall system with 

representative data sets. In addition, the concept allows 

for a bidirectional technology transfer from terrestrial to 

space applications and vice versa. Consequently, the 

presented infrastructure constitutes an enabling 

technology for the sustainable development of AI-based 

systems in space applications. 

 

ACKNOWLEDGMENTS 

This work is part of the project “KImaDiZ”, supported by 

the German Aerospace Center (DLR) with funds of the 

German Federal Ministry of Economics and Technology 

(BMWi), support code 50 RA 2015/2103. 

 

1. INTRODUCTION 

Modern terrestrial applications in automation and 

robotics reveal the tremendous capabilities and potential 

of AI-based approaches. As required by all machine-

learning approaches, a huge amount of data for the 

development and validation of the respective AI-based 

functionality is necessary. A crucial challenge of 

transferring existing AI-based approaches to aerospace 

applications is the very limited availability of reference 

data. Real world reference data for space applications 

come at enormous cost and in many cases the data is not 

even available yet. Additionally, testing AI-based 

functionality in its operational environment (e.g., in 

orbit) increases the risk for a mission failure. Thus, 

before even thinking about the qualification of AI-based 

space functionalities, the persisting challenge of data 

deficiency for the development as well as for the 

validation must be taken up. 

This paper faces this challenge by presenting a novel 

infrastructure which enables the effective and efficient 

development, the validation, and the use of modern AI 

functionalities in space applications. The key component 

that enables us to do this is the use of Digital Twins. By 

means of comprehensive Digital Twins [1], which 

provide holistic simulation models, the presented 

infrastructure allows to efficiently generate training data, 

to provide decision support methods for the selection and 

optimization of AI-based solutions, and finally supports 

the validation of the behavior of the overall system with 

representative data sets. Since the basic idea of the 

concept is not domain specific, it allows for a 

bidirectional technology transfer from terrestrial to space 

applications and vice versa. Thus, it promotes the 

integration of existing and validated terrestrial AI 

knowledge. Consequently, the presented infrastructure 

constitutes an enabling technology for the sustainable 

development of AI-based systems in space applications. 

Figure 1-1 illustrates the basic idea. 

 

 
Figure 1-1: Idea of the presented approach 

We will demonstrate the capabilities of the developed 

infrastructure in two use cases: the first one is in the 

context of training of an algorithm for AI-based pose 

              

             

                        

              

                          

     

       

           

              

mailto:andre.kupetz@rt.rif-ev.de
mailto:osterloh@mmi.rwth-aachen.de
mailto:dahmen@mmi.rwth-aachen.de
mailto:rossmann@mmi.rwth-aachen.de


 

estimation in rendezvous and docking (RvD) scenarios, 

and the second one is in the context of automated 

reinforcement learning, analysis, and evaluation of 

different AI variants for the navigation of a rover for 

planetary exploration missions. 

 

2. RELATED WORK 

Nowadays, AI-based systems are established in a 

multitude of application domains (e.g., image and speech 

processing). Independent of any application, the 

development and validation of AI-based systems highly 

relies on large amounts of high-quality data. With 

systems becoming autonomous, this amount of data is 

ever increasing. Consequently, simulation technology 

and data generated by simulation is widely getting 

acceptance in the development of AI-based systems, 

filling the gap of the data not yet available. This applies 

in particular to the automotive industry and the 

development of advanced driver assistance systems 

(ADAS) [2]. But also, the European Cooperation for 

Space Standardization (ECSS) underlines the value of 

simulation in the development process of products [3]. 

Detached from the development and validation of AI-

based system, the ISO 21448 – Safety of the Intended 

Functionality (SOTIF) faces a similar problem. The 

SOTIF process deals with the operation of systems in 

potentially unknown environments. Therefore, the 

SOTIF norm defines a procedure to identify unsafe 

operational scenarios of a system under test. Based on 

this, the result can be fed back to the development and 

minimize the number of known unsafe scenarios. This is 

depicted schematically in Figure 2-1. 

This approach can be transferred to the development of 

AI-based systems. Our research focuses on scenario-

based testing [3]. We developed a scenario-based 

framework, which allows to generate high quality 

training and validation data of AI-based systems. 

Therefore, our approach closely relates to formalized 

specifications to describe scenarios, like the 

OpenSCENARIO standard [4]. 

 

 
Figure 2-1: Goal of the SOTIF process 

3. BASIC ARCHITECTURE OF THE 

INFRASTRUCTURE 

Figure 3-1 illustrates the basic idea of the overall system 

architecture for the novel infrastructure.  

A virtual scenario is a representation of a problem that 

should be investigated (real scenario). Applying 

comprehensive simulation technology, as provided by a 

virtual testbed (VTB), a virtual scenario allows for the 

generation of training and validation data for the 

development of the AI. In our case, we build upon the 

VEROSIM simulation platform [1]. 

The infrastructure distinguishes between an abstract 

scenario (an abstract description of the problem at the 

semantic level), a logical scenario (a detailed description 

with entity relationships and parameter ranges defining a 

parameter space) and a set of concrete scenarios (unique 

scenarios with fixed values in the given parameter space). 

An abstract scenario serves as template for the generation 

of a logical scenario (e.g., by manual configuration with 

a UI, or automatic configuration, generated via an API). 

Then, a randomization engine processes a logical 

scenario and generates a multitude of concrete scenarios, 

taking the given constraints of the logical scenario into 

account (variant generator). Finally, a job manager 

Figure 3-1: System architecture for the infrastructure 



 

distributes the concrete scenarios to multiple instances of 

a virtual testbed to enable a parallel simulation of each 

concrete scenario on a computation cluster. For this 

purpose, each concrete scenario is automatically 

translated into an appropriate simulation model, making 

use of Experimentable Digital Twins stored in a 

component data base [5]. The training and validation 

data generated by the simulation in the virtual testbed is 

managed in the form of a result repository. 

The concept is accompanied by quality assurance (QA) 

measures that influence both, the AI system, and the 

training data to be generated. For this purpose, the 

generated data is constantly monitored regarding its 

relevance. Additionally, the performance of the deployed 

AI algorithms is evaluated. At the same time, QA 

monitors the operation to detect behavioral changes of 

the AI (e.g., due to changing environmental conditions in 

the real application) at an early stage. Based on the results 

of this continuous evaluation, it is then possible to fine-

tune the scenario configuration and generation to 

continuously increase the informative value of the 

generated training and validation data. 

 

4. INFRASTRUCTURE FOR AI-BASED 

APPROACHES SUPPORTED BY VIRTUAL 

TESTBEDS 

One key component of our approach is to develop an 

infrastructure that enables training and validation of AI 

algorithms using the execution of Digital Twins within a 

virtual testbed. To this end, the infrastructure must enable 

an efficient generation of high-quality training data. 

Depending on the use case the training data may need to 

be labeled. A major advantage of a simulation-based data 

generation is the availability of ground truth data, which 

effortlessly can be used to automatically generate labeled 

training data. This typically is of great importance for the 

labeling of sensor data like cameras (e.g., assigning 

corresponding label-IDs to coherent objects). Therefore, 

our virtual testbed realization provides rendering-based 

sensor simulation capabilities, resulting in Digital Twins 

of cameras or LIDAR sensors [10]. The labeling process 

is supported by a template to define specific label 

requirements, for example required data formats or 

specifications concerning data dimensionalities or 

hierarchical structures. These requirements are passed to 

our developed labeling interface, which then labels the 

simulation data. Training data can immediately be reused 

from the virtual testbed, e.g., for training in a supervised 

learning application, as well as being externally stored 

for later use. 

 
Figure 4-1: Schematic representation of the Python 

bridge for integrating AI algorithms 

In order to integrate AI algorithms, the virtual testbed is 

able to serve as a Python interpreter. We developed a 

Python bridge, which allows to connect a Python-based 

AI algorithm with the simulation core of the virtual 

testbed. Therefore, the Python bridge allows the 

initialization and execution of an AI wrapper that is 

represented by a Python script too, and at the same time 

the Python bridge provides an interface to the simulation 

kernel and the database (Figure 4-1). Consequently, 

current simulation data can be immediately processed by 

the AI algorithm and vice versa.  

Therefore, the abstract AI wrapper serves as a template 

and describes the required functions for the initialization 

and data processing, which then can be implemented 

regarding all application specific requirements. The 

implementation of the template is carried out 

independently of the interface for the simulation database 

and enables Python-based access to pre-existing AI 

frameworks such as PyTorch or TensorFlow. Finally, 

trained AI algorithms can be integrated back into the 

virtual testbed via the Python bridge, where the 

interactive in-the-loop validation for e.g., corner cases 

can be performed. 

 

5. METHODOLOGY FOR AN AUTOMATED 

CREATION OF SIMULATION SCENARIOS 

The developed methodology for the automated 

generation of simulation scenarios distinguishes three 

notions of scenarios and describes a formal process to 

connect and automatically derive the respective 

scenarios. Within our methodology, all scenarios are 

based on an XML specification that - in its core design - 

closely relates to the OpenSCENARIO standard from the 

automotive industry. The fundamental idea of the 

pursued approach is depicted in Figure 5-1. 



 

 
Figure 5-1: One abstract scenario specification is 

transformed to many different scenario variants 

Abstract Scenario: The abstract scenario is a formalized 

representation of e.g., a test or a training case. The 

abstract scenario defines all relevant entities, their initial 

configuration and their interactive behavior. 

Additionally, it specifies all parameters that can be 

altered. 

Logical Scenario: The logical scenario enriches the 

abstract scenario by the definition of parameter ranges 

and parameter constraint. The logical scenario spans the 

entire scenario space and allows to purposefully 

constrain certain regions in the potential high 

dimensional vector space. 

Concrete Scenario: The concrete scenario is a 

parametrized version of an abstract scenario. It fulfils all 

constraints defined by the logical scenario. It is possible 

to automatically translate concrete scenarios to 

executable simulation models. 

As shown in Figure 5-2, the different scenario versions 

are generated and connected via different tools/software 

modules. The first stage of the scenario generation tool 

chain is formulated independent of any simulator. Only 

after creating a concrete scenario, an executable 

simulation model is generated. Since concrete scenarios 

are defined based on an XML-file, they are usually much 

smaller and thus better to handle than simulator specific 

executable simulation models.  

Scenario Configurator: The scenario configurator is a 

tool, which is implemented specifically for certain 

applications and allows to automatically generate a  

logical scenario, e.g., based on user defined parameter 

ranges and constraints. 

Variant Generator: The variant generator is a generic 

software module, allowing to create an arbitrary number 

of concrete scenarios based on the description of the 

logical scenario. Therefore, the variant generator realizes 

a Markov-Chain-Monte-Carlo based stochastic process, 

generating and evaluating random parameter samples [6]. 

The variant generator solely relies on a random process. 

Theoretically, it would be possible to traverse the entire 

parameter space with a brute force approach, but many 

unnecessary scenarios without new information will be 

generated, making the process inefficient. We rely on the 

stochastic process exploring the parameter space, and if 

interesting sub-spaces in the overall parameter space are 

found, it is possible to specifically generate new 

scenarios in this sub-space. 

Importer: Only in the last stage of the tool chain, a 

simulator specific executable model is generated. Of 

course, this importer is realized specifically for the 

desired simulator. Typically, this translation process 

relies on a repository of Digital Twins (i.e., 

preconfigured and validated simulation models of all 

relevant entities). Based on this, the simulation model is 

created, the initial values are assigned, and a scripting of 

the desired behavior of all systems is integrated [7]. 

Once, the executable simulation model is available, the 

simulation can be carried out and the training and 

validation data for an AI-based system can be generated 

and collected in a database. 

 

6. DECISION SUPPORT FOR AI-BASED 

APPLICATIONS 

It is commonly accepted that it takes large amounts of 

data and test cases to train and validate AI-based 

applications. Due to this increasingly growing number, it 

is important to automatize the analyses of simulation 

results, in order to support experts in the development 

and validation of AI-based systems. 

Our developed process for the decision support directly 

ties in after the simulation of a concrete scenario, see 

Figure 6-1. During simulation all relevant properties of 

the Digital Twins are logged to an SQLite database. 

Figure 5-2: Generation of executable simulation models by generating concrete scenarios from abstract scenario 

specifications 



 

Therefore, either white-list or black-list logging 

approaches can be chosen. Both of which have specific 

advantages and disadvantages with regard to their 

performance and analyses capabilities. 

Once the initial result database is generated, additional 

KPIs and metrics can be computed in a post-processing 

step, resulting in an enriched database. Based on these 

numeric values, it is possible to execute automated 

evaluations of the simulation results. If sensible, it is 

possible to calculate certain metrics or KPIs while 

simulating the concrete scenario, facilitating the post-

processing of the simulation results. It is important that 

the post-processing is more flexible since it directly 

operates on the database and does not require to carry out 

new simulations if new KPIs are identified and should be 

calculated. 

Finally, this database can be used for statistical analyses, 

e.g., to identify critical operational scenarios of an AI-

based system. Additionally, the comprehensive analysis 

allows to directly replay the simulation, empowering 

experts to intuitively analyze simulation results and 

drawing conclusions in the context of decision support, 

see Figure 6-2. These results can now iteratively be fed 

back, in order to derive more meaningful logical 

scenarios, creating new relevant scenarios either for 

training or validation of the AI-based system. 

 

 
Figure 6-2: Using multiple instances of a Digital Twin 

(represented by their ghosts) in context of decision 

support 

 

7. EXAMPLE APPLICATIONS 

The following applications demonstrate the capabilities 

of the developed architecture and its fundamental design 

concepts. 

 

7.1. Automated Rendezvous and Docking 

The first application focuses on relative pose estimation 

required for automated Rendezvous and Docking (RvD) 

maneuvers. We assume that the pose estimation is 

performed by an AI-based system, which needs to be 

trained and validated. Therefore, we build upon a 

calibrated Digital Twin of a space LIDAR that generates 

point clouds during the approach (i.e., the point clouds 

are distorted due to the relative dynamics of target and 

chaser). 

 

 
Figure 7.1-1 Generation of training and validation data 

using a Digital Twin of a space LIDAR 

First, we begin by defining the abstract scenario. Table 1 

highlights the relevant entities within the scenario, as 

well as the parameters that should be considered during 

variation. The relevant entities of the scenario are 

provided in a Digital Twin repository (i.e., the target can 

be changed easily, by referencing a different entity from 

the repository). The Digital Twins of the LIDAR is 

already integrated to the Digital Twin of the Chaser. For 

clarity reasons, we do not describe the scenario based on 

the developed XML-scheme. 

 

 

 

Figure 6-1: Data driven decision support for AI-based applications 



 

Table 1: Abstract Scenario of RvD use case 

Relevant Entities Chaser 

Target 

Variable Parameters Pose Chaser 𝑝𝐶ℎ𝑎𝑠𝑒𝑟 , 𝜑⃗⃗𝐶ℎ𝑎𝑠𝑒𝑟  

Vel. Chaser 𝑣⃗𝐶ℎ𝑎𝑠𝑒𝑟 , 𝜔⃗⃗⃗𝐶ℎ𝑎𝑠𝑒𝑟  

Pose Target 𝑝𝑇𝑎𝑟𝑔𝑒𝑡 , 𝜑⃗⃗𝑇𝑎𝑟𝑔𝑒𝑡  

Vel. Target 𝑣⃗𝑇𝑎𝑟𝑔𝑒𝑡 , 𝜔⃗⃗⃗𝑇𝑎𝑟𝑔𝑒𝑡  

 

Subsequently, the logical scenario is specified, defining 

the parameter space of the scenario. For simplicity 

reasons, Table 2 only highlights some of the individual 

components of the variable parameters. As shown in the 

logical scenario, the parameters can either be distributed 

uniformly or based on a Gaussian distribution. The 

exemplary parameter constraint in the logical scenario 

enforces an approach of the chaser towards the target (i.e. 

an approach in 𝑥-direction is assumed). 

 

Table 2: Logical Scenario of RvD use case 

Parameter Ranges 𝑝𝐶ℎ𝑎𝑠𝑒𝑟,𝑥 ∈ [0, 500]  

𝑣𝐶ℎ𝑎𝑠𝑒𝑟,𝑥 ∈ [0, 1]  

𝑝𝑇𝑎𝑟𝑔𝑒𝑡,𝑦 ∈  𝒩(0, 10) 

𝑣𝑇𝑎𝑟𝑔𝑒𝑡,𝑥 ∈  𝒩(0, 0.01) 

Param. Constraints 𝑣𝐶ℎ𝑎𝑠𝑒𝑟,𝑥 − 𝑣𝑇𝑎𝑟𝑔𝑒𝑡,𝑥 > 0 

 

The variant generator can generate an arbitrary number 

of concrete scenarios, forming specific test cases for 

either training or validation of the AI-based functionality. 

Thus, a concrete scenario is a specific instance of an 

abstract scenario, fulfilling all constraints from the 

logical scenario. 

 

Table 3: Concrete Scenario of RvD use case 

Concrete  

Parameters 

𝑝𝐶ℎ𝑎𝑠𝑒𝑟,𝑥 = 250 

𝑣𝐶ℎ𝑎𝑠𝑒𝑟,𝑥 = 0.5  

𝑝𝑇𝑎𝑟𝑔𝑒𝑡,𝑦 = 1 

𝑣𝑇𝑎𝑟𝑔𝑒𝑡,𝑥 = 0.01 

 

Finally, the concrete scenario can be translated to an 

executable simulation model. Details about the 

generation process can be found in [7]. Figure 7.1-1 

depicts an impression from the simulation that is used to 

generate training and validation data. Currently, the 

training and validation process is in progress. 

 

7.2. EXPLORATION 

The general scope of the second application is, that a 

rover (a Digital Twin of the rover “Perseverance”) learns 

to get from random start points to random target points 

autonomously on a 50m x 50m model of a Mars-like 

surface. The surface contains rocks and crater that the AI 

should learn to circumvent.  

The particularly interesting part of this reference 

application is that a multitude of variants of an AI-based 

pathfinding system can be trained, evaluated and 

compared automatically. Therefore, we use the workflow 

described in section 5 to create concrete scenarios, which 

form the basis for different AIs. This means, here each 

concrete scenario is used to train a different variant of an 

AI system for a pathfinding problem. The entire process 

is based on reinforcement learning [8]. Since, all variants 

can be handled separately, this process can easily be 

parallelized (see Figure 7.2-1).  

 

 
Figure 7.2-1: Parallel Training of AI variants for various 

concrete scenarios 

Finally, the performance of all AI variants is evaluated 

and compared automatically with the help of quality 

indicators globally defined in the abstract scenario. 

In contrast to approaches where the goal is to develop one 

highly sophisticated AI, we focus on coping with the 

multitude of adaptation possibilities within the complete 

application. This includes of course variations of the 

hyperparameters, reward function, but also variations of 

type and location of sensors used by the rover, or which 

types of movement actions the rover should offer. The 

definition of the variation possibilities is supported by a 

scenario configurator and stored in our XML-based 

logical scenario. 

Instead of focusing on a single setup that may lead into a 

dead end, our infrastructure allows to investigate a wide 

range of variants to avoid such risks and leads the user 

into the right direction for his application setup. 

Applying our approach, we implemented a common 

neural network, based on a deep Q-learning variant [9] as 

shown Figure 7.2-2. It is important to note that the 

variation capabilities also include arbitrary 

configurations of the sensor system of the rover (e.g., 

RGB camera, a time-of-flight camera, or a laser scanner). 

In any case the Python wrapper described in section 4, 

will preprocess this data and pass it to the neural network.  

 

              

                 
                                            

      
             
             

         

      
             
             

         

          
           

              

     

     

        

        

 

 

 
 
 
  

  
  

  
  

 
  
 
  

 
 
 
  

  
 

  
  

 
  
 
  

 
     

     

        

        

 



 

 
Figure 7.2-2: Layout of the neural network 

First, the sensor data is processed by a set of 

convolutional layers, aiming for the detection of craters 

and rocks and thus the realization of a sensor-based 

perception of the environment. The final output layer 

returns a q-value for each action, which has a significant 

influence on the selection of the next action to be 

executed.  

The following Figure 7.2-3 illustrates a snapshot during 

the training process of one variant. The rover is equipped 

with an RGB camera with a resolution of 64 x 64 pixel. 

The Python wrapper then turns the image data into 

luminance values for the neural network. A cutout of 

specified reward areas is illustrated in Figure 7.2-3 by 

means of the red (reward -1) and green (reward +5) 

metaphors. The complete reward function is defined as 

follows: 

 𝑅𝑡 = |𝑃𝑜𝑠𝑅𝑜𝑣(𝑥, 𝑦) − 𝑃𝑜𝑠𝑇𝑟𝑔(𝑥, 𝑦)|
𝑡
 (1) 

 𝑅 = 𝑀𝑎𝑝𝑅𝑒𝑣(𝑥, 𝑦) + 𝑅𝑡−1 − 𝑅𝑡 (2) 

Rt represents the distance between the rover and the target 

at a time t. Since in the long run the distance of the rover 

to the target should reduce, 𝑅𝑡−1 − 𝑅𝑡 represents a 

positive reward for getting closer to the target. Finally, 

the reward value for the rover’s current position on the 

map (given by the reward areas) is added on top. This 

gives the total reward for the action that has just been 

performed. 

Regarding the configuration of the hyperparameters, only 

the values of the three most important hyperparameters 

are outlined in Table 4.  

 

Table 4: Excerpt of the hyperparameters 

Parameter  Value  

Gamma 0.99 

Learning rate 0.001 

Epsilon 0.4 

 

Then, we limited the number of steps per episode to 100. 

Each step correlates to one action performed by the rover. 

This means if the rover is making too many detours, the 

episode is stopped. In consequence, we prefer to train AIs 

that will reach its destination quickly. 

Finally, we defined the following four movement actions 

the rover can execute: move forward, move backward 

and turn on the spot clockwise and counter-clockwise. 

 

 
Figure 7.2-3: Snapshot during the training process 

In a first test run, a configuration of the logical scenario 

was performed which resulted in 36 different concrete 

scenarios – respective AI variants to be trained. Figure 

7.2-4 illustrates the current intermediate result of the test 

run. In all these 36 variants, we used an RGB camera and 

set the number of steps per episode to 100.  

The color coding of Figure 7.2-4 shows how often an 

episode was aborted prematurely with respect to the 

target position that the rover was supposed to approach. 

For example, if the rovers target was within the red area 

in the lower left corner of the map, no matter where the 

rover’s starting point was, it was quite unlikely that it 

would reach its destination before exceeding the 

maximum number of steps for an episode. The color-

coded map is the result of all 36 variants. 

 

 
Figure 7.2-4: Training status of a first test run 

                                         

                                      



 

Currently, the training and validation process is in 

progress and different sensors and rover actions will be 

considered, as well as a wider range of values for the 

hyperparameters will be used. In addition, different 

metrics like shortest path or fastest path will be used to 

enable a comprehensive evaluation of the AI variants. 

 

8. RESULTS AND CONCLUSION 

In this paper, we presented a novel architecture to 

generate training and validation data for the development 

of AI-based systems. The inherent methodology relies 

mainly on three scenario definitions: the abstract 

scenario, the logical scenario and the concrete scenario. 

The development process that is aligned with the 

architecture, allows to purposefully use the results for 

QA purposes of AI-based systems, and at any point 

provides feedback opportunities, in order to adapt the 

defined scenarios. In turn, this results in a highly flexible 

data generation process, resulting in high-quality training 

data. In addition to data generation tasks, the architecture 

suits the requirements of reinforcement learning 

approaches, enabling to directly train agents in 

simulation. Currently, we apply the developed approach 

to space applications, but due to the generalized concept, 

we intend to apply the underlying fundamentals to 

terrestrial applications as well. 

 

9. REFERENCES 

1. Dahmen, U., Osterloh, T. & Roßmann, H.J. (2022). 

Verification and validation of digital twins and 

virtual testbeds. International journal of advances 

in engineering sciences and applied mathematics 

11(1), ijaas. pp.47-64. 

2. Fremont, D.J., Kim, E., Pant, Y.V., Seshia, S.A., 

Acharya, A., Bruso, X., Wells, P., Lemke, S., Lu, Q. 

& Mehta, S. (2020). Formal scenario-based testing 

of autonomous vehicles: From simulation to the real 

world, in IEEE 23rd International Conference on 

Intelligent Transportation Systems (ITSC). pp1-8. 

3. ESA-ESTEC, (2020). ECSS-E-ST-40-07. Online at 

https://ecss.nl/get_attachment.php?file=2020/04/E

CSS-E-ST-40-07C(2March2020).pdf 

4. Association for Standardization of Automation and 

Measuring Systems, (2021). ASAM 

OpenSCENARIO® Standard., Online at 

https://www.asam.net/standards/detail/openscenari

o 

5. Schluse, M., Priggemeyer, M., Atorf, L. & Rossmann, 

H.J. (2018). Experimentable Digital Twins - 

Streamlining Simulation-Based Systems 

Engineering for Industry 4.0.  IEEE Transactions on 

Industrial Informatics, vol. 14, no. 4, pp1722-1731. 

6. Maqbool, O., Roßmann, H.J. (2022). Formal Scenario-

driven Logical Spaces for Randomized Synthetic 

Data Generation. 10th International Conference on 

Model-Driven Engineering and Software 

Development.  

7. Dahmen, U., Osterloh, T. & Roßmann, H.J. (2021). 

Generation of Virtual Test Scenarios for Training 

and Validation of AI-based Systems. IEEE 

International Conference on Progress in Informatics 

and Computing (PIC), Shanghai, China, pp64-71. 

8. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., 

Antonoglou, I., Wierstra, D. & Riedmiller, M. 

(2013). Playing Atari with Deep Reinforcement 

Learning. DeepMind Technologies. Online at 

http://arxiv.org/abs/1312.5602. 

9. Arulkumaran, K., Deisenroth, M.P., Brundage, M. & 

Bharath, A.A. (2017). Deep Reinforcement 

Learning: A Brief Survey. IEEE Signal Processing 

Magazine, Volume: 34, Issue: 6, pp26-38. 

10. Thieling, J., Roßmann, H.J. (2020). Scalable and 

Physical Radar Sensor Simulation for Interacting 

Digital Twins. IEEE sensors journal 21(3), pp3184-

3192. 

 

 

 

 

https://ecss.nl/get_attachment.php?file=2020/04/ECSS-E-ST-40-07C(2March2020).pdf
https://ecss.nl/get_attachment.php?file=2020/04/ECSS-E-ST-40-07C(2March2020).pdf
https://www.asam.net/standards/detail/openscenario/
https://www.asam.net/standards/detail/openscenario/
http://arxiv.org/abs/1312.5602

