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ABSTRACT

Exploring different planets yields a multitude of hazards
for the robotic explorers. To mitigate the risks imposed
on the robots, intelliRISK2 proposes a risk-aware ex-
ploration framework. This framework includes different
learning strategies to both gain a quick understanding of
the surroundings, as well as learning from previous ex-
periences. To adapt and understand the surroundings,
active learning strategies and external anomaly detection
are applied. During the runtime, the health of the robot is
continuously monitored through an internal anomaly de-
tection. Furthermore the robot learns from previous ex-
periences by incorporating the corresponding knowledge
into an episodic memory. The combined strategies allow
the autonomous robots to perform risk-aware exploration
missions and adapt to various situations

Key words: Planetary Exploration, Machine Learning,
Walking Robots.

1. INTRODUCTION

Exploration missions into the unknown are a complex
and daunting task for robots. To safely navigate in un-
known environments, the robots need to both evaluate
their surroundings as well as their own current health sta-
tus. In the context of planetary exploration, the missions
can only be partially simulated on earth due to different
constraints, such as gravitational force and material com-
position of the surroundings. To minimize the potential
hazards to the robot, mainly safe and conservative deci-
sion are taken, this however limits the potential of the
robot. Previously in intelliRISK [1], the knowledge of the
system was modeled by hand and only known surround-
ings and robot behavior were encoded. To enhance this,
three different learning strategies are applied to adapt to
novel situations and learn from previous experiences: Ac-
tive Learning, Anomaly Detection and Episodic Memory.
The anomaly detection is applied both to the internal as-
sessment of the robot as well as the classification of the
surroundings. The active learning component is utilized
to improve the segmentation of the surroundings, while
the episodic memory is applied to learn from previous

Figure 1. ANYmal C [15] in the test environment. The
robot detects anomalies in the environment and monitors

its current status during the mission. The learned experi-
ences are encoded in the episodic memory of the robot.

situations and states of the robot.

To determine hazards from the surroundings a twofold
approach is used, classification of known ground types
and novel impressions. Through this, the robot can gain
an in depth understanding of its surroundings. To con-
tinuously improve the semantic segmentation an active
learning approach is applied. The robot can indepen-
dently, select images which it thinks would benefit the
learned model and is provided by a human operator on
a base station with annotations. This is further enhanced
through an ensemble-based anomaly detection: when the
robot detects a novelty, it potentially has detected a haz-
ard. Furthermore, anomalies can be regarded as inter-
esting exploration goals, since they would lead to new
insights. Thereby, exploring them would increase the
knowledge gained throughout the mission.

The safe and robust execution requires a self-assessment
of the robot, where it can react to known situations as well
as novel circumstances. An unsupervised anomaly de-
tection approach is utilized to determine defects or novel
behavior of the robot. With this approach the robot can
react to changes through damages or different payloads.
This gained knowledge can then further be incorporated



into an episodic memory, which allows the robot to recol-
lect experiences from the past to gain insights on the best
behavior in the current circumstances. Furthermore, by
extending the members of the mission to a heterogeneous
team, the robots could negotiate which robot is currently
best suited to carry out a specific mission goal.

Both the external and internal assessment lead to a robotic
system which has the capability to adapt to novel sit-
uations in an exploration mission. The results of the
work can lead towards a robust and risk-aware path-
planning which continuously reassesses the robots health.
Thereby, allowing an autonomous, yet safe exploration in
unknown areas.

The paper is structured as follows, first an overview on
the state of the art is given. Afterwards the core con-
cepts of intellIRISK?2 are detailed. We are going to high-
light specifically the active learning, anomaly detection
and episodic memory components of the presented stack
Finally, the concept of orchestration is provided before
the conclusion and outlook are highlighted.

2. RELATED WORK

State of the art as presented here will be subdivided ac-
cording to the three categories active learning, anomaly
detection and episodic memory.

In the context of active learning, the foundations are high-
lighted by Settles in [3]. The author, provides a detailed
summary of different active learning strategies, query
generation and data collection. Most approaches rely
on pool-based strategies in contrast to the stream-based
approach in intelliRISK2. Yang and Loog [4] show in
their overview of different active learning strategies that
even simple and even random query selection can com-
pete with more complicated selection methods for pool-
based queries in the context of logistic regression. For
semantic segmentation tasks Mackowiak et al. [5] pro-
pose an approach based on estimated information gain
and annotation cost to find interesting pixels in an im-
age. The queries are based on patches of an image, an
approach on complete images is proposed by Tan et al.
in [6]. The authors apply the information gained from an
edge detection algorithm on the image to the query strat-
egy. Both Mackowiak et al. [5], and Tan et al. [6] take
approximately 17% of the images of their respective pool
to achieve an accuracy of 95% compared to the baseline.
However, most approaches are tackling pool-based meth-
ods and are missing the transfer to stream-based policies.

Anomaly detection is the task of finding unusual patterns
in data. One of the first studies is by Silverman [7] and
is based on density estimation. A detailed review of ex-
isting approaches and key studies was conducted by Pi-
mentel et al. in [8]. An early approach for novelty de-
tection in the surroundings is proposed by Marsland [9],
the author uses self organising networks in an inspection
task. A risk minimizing approach is shown by Sofman

et al. in [10]. The authors create models of the environ-
ment to detect changes in repeated execution. Through
encoding knowledge of successful missions and constant
monitoring they are able to minimize risks. For internal
fault detection a health estimation needs to be performed.
Buderath et al. [11] show the requirements for structural
health assessment in UAVs. A data based unsupervised
machine learning approach for fault detection is proposed
by Amruthnath and Gupta in [12].

A formal design for episodic memory is proposed by Sta-
chowicz et al. in [13]. The recall of such episodic mem-
ories for robot action execution is detailed by Rothfuss et
al. in [14]. The authors utilize a deep neural network to
implement the episodic memory. With this they are able
to encode and recall previously learned visual episodes.
The integration of the active learning and anomaly de-
tection into an episodic memory and an overall mission
orchestration is currently missing. IntelliRISK?2 tries to
solve the open questions and provide an overall risk-
aware exploration framework.

3. RISK-AWARE EXPLORATION

IntelliRISK?2 can be roughly divided into two major parts:
the introspection and the external perception. The com-
plete framework is shown in Figure 2. Both areas are
tackled with different approaches. For the introspection
fault detections through anomaly detection and reflection
through episodic memories are key components. The per-
ception utilizes active learning components and anomaly
detections on a distributed setup with a base station to
adapt throughout the mission. Through the setup with
both self and environment awareness the capabilities of
the robot are vastly increased and risk aware missions are
possible.

In the following sections first the external perception
through active learning and anomaly detection is de-
scribed before the introspection through episodic mem-
ories is detailed. Finally, the whole interacting system
and mission control via behavior trees is explained.

3.1. Setup

The main robot which is utilized in intelliRISK2 is ANY-
mal C [15]. The four legged robot is capable of navigat-
ing across rough terrain and tackle difficult challenges.
Through the open setup using ROS [16] as an underlying
framework, it is possible to get both external and inter-
nal states of the robot. Especially the internal states are
utilized to analyze the robots own current health status.

The robot is equipped with three CPUs, however it is
missing a GPU. Therefore, all deployed systems have to
able to run with low computational burden. To train the
according networks a base station is employed. There,
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Figure 2. The general setup of the intelliRISK?2 stack. On the left the different user interfaces are specified, these include a
behavior editor for the behavior trees, visuals for the health and the map. The internal models of the robot can be divided
into the capability model, the health model and the environment model. On the environment model the external anomaly
detection and the active learning is executed. In the mission layer, both the mission control and adaptation is performed,
here the behavior trees are generated and can be adapted during runtime. Afterwards the missions are executed and the

live data is returned into the health and environment models.

the data acquired by the robot is stored and used in dif-
ferent training scenarios before the models are deployed
onto the robot.

The sensors used for the perception are the Velodyne
Puck Lidar for the mapping and Intel Realsense D435 for
the segmentation and external anomaly detection. Google
Cartographer is used for SLAM applications [17]. Since
Cartographer only provides a 2D output (including 3D
localization), a 3D mapping solution was built on top of
it. To this end, the VDB Mapping [18] approach is used.
This allows for a real-time capable mapping of the sensor
data into a voxel representation. The map enables addi-
tional data to be stored alongside the occupancy values
and can be utilized for 3D navigation. In the context of
intelliRISK?2, a risk-aware 3D Navigation will be devel-
oped.

Furthermore the software stack, even though primarily
used on ANYmal C, can be easily transferred to different
robotic systems. For this, sensors providing the similar
ROS topics containing lidar and image data are required.

3.2. Active Learning

Understanding the surroundings is vital to find safe paths
through the robots surroundings. However, exploring un-
known areas with only sparse previous knowledge is a
difficult task for any autonomous system. To help the

robot in these situations, an active learning environment
was set up, where a human operator can collaborate with
the robot through a base station.

The active learning framework is distributed between the
robot and a base station. On the robot, the continuous
camera stream is passed into a semantic segmentation.
The results of the segmentation are then analyzed by an
active learning node. Once this node deems the seg-
mented image as promising for further training the orig-
inal image alongside the segmentation is passed into a
buffer for storage [2]. The human operator can request
batches of images from the buffer for annotation from
the base station. As soon as the images are annotated,
they are incorporated into the training data and a new
model can be trained and then deployed onto the robot.
This communication cycle can be utilized throughout the
whole mission to continuously improve the model of the
semantic segmentation. To account for changing selec-
tion thresholds with new models an adaptive threshold
is introduced. Furthermore, since the images are stored
in the buffer and come from a continuous data source, a
filter asserts that these images in the buffer have less sim-
ilarity. A detailed review on a small custom dataset and
existing drone datasets is performed in [2]

By using the human for annotation in the loop, the robot
is guided to a better understanding of the surroundings,
while simultaneously the annotation overhead is reduced.
This approach can further be extended to utilize different



Figure 3. The anomaly detection with live data from the
robot. On the left side, the input image is shown. On the
right, the corresponding segmentation mask of the ensem-
ble based anomaly detection is highlighted.

sensors to gain a robust segmentation. It is even possible
to have a team of robots, trained with different datasets,
cooperate to label the data of each other to increase the
overall results.

3.3. Anomaly Detection

The anomaly detection can be divided into two parts: ex-
ternal novelty detection and internal fault detection. For
the novelty detection, the camera stream is analyzed by
an ensemble of neural networks to find previously unseen
structures and environments in the surroundings. Each
network is an auto-encoder trained on a different dataset.
By combining different input modalities such as RGB
and depth information and utilizing the versatile train-
ing data, the ensemble can outperform the individual net-
works.

To achieve the best results at the beginning of a new mis-
sion, data from aerial images or previous missions can
be used. By combining the different models where each
focusses on different aspects and features of the data,
the overall precision of the anomaly detection can be in-
creased. Furthermore, to enhance the system, data can be
acquired during the runtime of the mission and after train-
ing on the base station, the new model can be added to the
ensemble. This allows for a continuous learning and im-
provement of the system, similar to the active learning
approach.

The applied loss function for the training of the individ-
ual autoencoders is a pixelwise mean squared error over
the processed image patch. For ease of use and to keep
the network parameter size small, images are divided into
patches of 64x64 px to utilize the higher resolution of the
complete image. On each patch the squared error is used
as reconstruction error to determine if a pixel is anoma-
lous. After the detection the patches are stitched together
again and the results are given on the complete image. In
a post-processing step only areas with pixel clusters are
kept, thereby eroding single, anomalous pixels without
classifying them as anomaly.

By combining multiple neural networks with different
learned weights the results can be improved. Depending

on the context, the different networks can be combined
with a weighted mean, as described in Equation 1.

1 E
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Where p describes the anomaly score of the pixel over-
all different ensembles. E is the number of networks in
the current ensemble, and 7 describes the individual net-
works. Therefore, the individual score(s) of a network is
calculated and weighted (w). The weights can be adapted
according to the certainty of the individual networks de-
pending on each context. With this setup the robot is ca-
pable of detection novel surroundings and thereby, find
interesting sites worth exploring.

The internal fault detection is implemented in two differ-
ent approaches: the first relies on Gaussian Mixture Mod-
els (GMMs), whereas the second utilizes a bidirectional
Wasserstein GAN. Both approaches are used to estimate
the health of the robot. The core idea behind both sys-
tems is to accurately asses faults in the internal behavior
of the robot, both implement an unsupervised fault detec-
tion system.

The GMMs are fitted to the healthy recorded data (repre-
senting nominal operation) using the Expectation Max-
imization algorithm. Afterwards the continuous data
stream can be scored using the GMMs. Here, the aver-
age logarithmic probabilities of the data points are com-
puted. When the score decreases, a deviation from the
normal state is detected, thereby showing a decrease of
the health of the robot [19].

The updated fault detection approach uses a bidirectional
Wasserstein GAN [20]. Here a small amount of the non-
anomalous data is utilized to train the model. Since the
multivariate data is highly dependent the latent space of
the bidirectional Wasserstein GAN can be of a low di-
mension. In the work different encoding ranging from 2
to 20 latent variables are applied. Furthermore, different
variants of the system are compared against each other.
The first consists of fully connected linear layers with
LeakyReLu activation function. The second is based on
a long short-term memory (LSTM) network. As a third
variant, a convolutional approach is implement. Finally
the second and third approach are combined to a more
complex approach. The results show that especially the
LSTM based approaches show a stable anomaly scoring
over time. However, the other approaches show a clear
distinction of anomalies as well. Thereby, showing a ro-
bust detection of anomalies with different models.

Both internal fault detection approaches are evaluated on
ANYmal C. The introduced faults are weights attached
to a single leg. Hereby, the GAN framework can consis-
tently detect and localize even small anomalies during the
robots runtime.



3.4. Episodic Memory

A memory function was designed to assess the risks en-
countered by the robot in earlier episodes or missions.
This allows the robot, to scan for similar episodes in its
past and remember the outcome and performed actions.

The episodic memory is implemented as a short term
memory ring buffer which gets persistently stored when
one of the previous mentioned internal anomaly detec-
tions finds a fault. Thereby generating a long term mem-
ory of the sensor data before an error. Through a Fast
Fourier Transform (FFT) the current sensor data can be
compared with the previously stored episodes. Therefore,
the robot can learn through its memory to avoid poten-
tially dangerous episodes in future scenarios. Potentially
a single episode which did impose harm to the robot can
lead to the robot avoiding similar situations in the future.
In the episodic memory, both internal sensor data as well
as external perception can be included. Therefore, a mul-
titude of sensory data can be processed to evaluate the
episodes and choose an action accordingly.

3.5. Risk Map

Risk-aware navigation requires in-depth knowledge of
the current surroundings. To find paths for safe naviga-
tion, an understanding has to be provided to the respective
path planners. To this end, a map with a risk understand-
ing is of utter importance. Since the approaches in intel-
liRISK?2 should account for all possibilities of unknown
environments a complete 3D Mapping is desired. There-
fore, the VDB Mapping approach [18] is enriched with
additional information.

In the extended map, different kinds of layers can be in-
cluded for either semantic understanding of the surround-
ings or different properties of the ground as can be seen
in Figure 4. With this information a detailed robot and
task specific planning can be conducted. This means, de-
pending on the surroundings of the robot and its current
risk affinity, different plans could be generated. The more
risks the robot would be willing to take, the more direct
the paths would be. If the risk parameter is low, the robot
would prefer detours through better traversable environ-
ments. On the other hand, a high risk affinity would tip
the robot towards using shortcuts through risky terrain.

Additionally, depending on the robots current health sta-
tus as estimated by the internal anomaly detection, the
robot would adapt its behavior, i.e. changing its locomo-
tion mode. Therefore, utilizing the internal state and the
episodic memory to assert a risk-aware execution of the
path.

3.6. Risk-aware Exploration

The overall orchestration of the risk-aware exploration
will be done by a behavior tree. The behavior trees are

Figure 4. Voxel representation of the surroundings as it is
seen by the robot. In the view of the robot different haz-
ardous objects are highlighted in red. The more danger
the robot anticipates the darker the red hue is. Green de-
notes safe environments. In this context the gravel testbed
from Figure 1 is visible with added additional stones in
front of the robot.

capable of triggering the mission planning, its execution
and can organize multiple agents.

The main mission planning will be conducted on a base
station and can generate behavior trees which, in return,
can be passed to an individual robot. However, each
robot will be able to plan its own risk-aware path ac-
cording to its current status and estimate the health costs
and risks based on their own trained models, capabilities
and experiences. Once assigned an exploration target, the
robot would start its path towards said goal. During the
execution the internal and external assessment is active
and once the robot finds anomalous behavior a replan-
ning will be started. This replanning will contain both
the overall mission and the path planning, and can incor-
porate the current models of the robot’s health and envi-
ronment. Therefore, the mission will always be assessed
with the latest insights the robot gained in the unfamiliar
surroundings.

4. CONCLUSION AND FUTURE WORK

This paper highlights the overall structure of intelliRISK2
and its main components. It is shown how the robots can
both evaluate the hazards from their surroundings, as well
as their own current health status. To achieve the risk
assessment of the surroundings, an active learning ap-
proach for semantic segmentation is applied. This allows
an operator to aid the robot from a base station to quickly
gain an understanding of the environment. If there are



unforeseen and unknown structures, a novelty detection
based on ensembles provides insight. This enables the
robot to generate interesting points which are worth ex-
ploring. The monitoring and recollection of the robots
health is based on an anomaly detection of the internal
sensor readings and an episodic memory. The anomaly
detection monitors the current state of all readings and
through a bidirectional Wasserstein GAN the sensor data
can be transformed into a low dimensional latent space.
When an anomaly is found, the episodic memory saves
the corresponding episode. Thereby, the robot can con-
tinuously compare its current execution with previously
collected negative experiences. This allows the robot to
avoid doing actions which have proven to have a harmful
outcome in similar situations. Through an overall mis-
sion planning using behavior trees, the robot can perform
risk-aware exploration missions.

The next steps are improving the autonomy of the behav-
ior tree generation and bringing the whole setup into an
analog mission. Thereby, going from a controlled lab en-
vironment into more complex environments.
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