DYNAMIC FOR DUAL-ARM FLOATING SPACE ROBOT WITH CLOSED-CHAIN AND RECURRENT ROBUST FUZZY NEURAL NETWORK FOR OBJECT GRASPING

*Jing Cheng¹, Li Chen²

¹Institute of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, Fujian, China. E-mail: cjzz859@163.com
²Institute of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, Fujian, China. E-mail: chnl@fzu.edu.cn

ABSTRACT

The dynamic model and the control method for dual-arm space robot grasping a target are discussed. Based on the Lagrange method, the dynamic model of an open chain space robot is established. The dynamics equations of dual-arm space robot with closed-chain are derived by incorporating the closed-loop constraints equations into equation of open chain system. Upon this basis, the recurrent robust fuzzy neural network control is proposed for the closed-chain system with uncertain parameters to complete the accurate control of load position and attitude. The recurrent fuzzy neural network is used to approximate the unknown part with H_∞ tracking characteristic to overcome the effects caused by system parameter perturbation. At last, numerical examples simulate the process of a planar dual-arm space robot transferring a target and verify the efficiency of the control scheme.

1 INTRODUCTION

With the development of space technology, there has been much interest in the space robot[1-2] recently. The space robot system has been used in the space missions such as the surviving, construction, repair and maintenance of satellites and space stations. The free-floating space is a special kind of space manipulator which the base is free under the micro-gravity space environment. For the dynamic coupling between the manipulator and the base of the free floating space manipulator, the trajectory control of a space robot is more complicated than that of a terrestrial robotic system, and the situation will be worse when some of system inertial parameters are uncertain[3]. Walker et al.[4] proposed adaptive control for space robot with uncontrolled position and attitude of base. Chen et al.[5] proposed robust control methods for a space robot system with uncertain parameters were estimated on-line. Over the last ten years, many control scheme studies has been applied in space robot, such as adaptive fuzzy control[6], neural network control[7], etc. Most of the space robot researches mainly focus on the control of single arm space robot, the control of dual-arm space robot research is less. And none of the aforementioned studies has been performed against the closed-loop constraints of a dual-arm space robot. This is because the closed chain dual-arm space robot has some problems: (1) the closed chain grasping system introduces closed-loop constraint; (2) closed chain system controllers are redundancy and need distribution torques reasonably.

Since the heavy load and task complexity is growing up in space mission, multi-arm systems become more and more important in future. The closed-loop configuration will be formed when the manipulator arms grasp a common target. The closed-loop constraints imposes both kinematic and dynamic problem on the space robot system. Because the aforementioned problem, the control scheme design for dual-arm space robot grasping a target will be more complicated than that for the unconstrained one. Dual-arm space robot have been applied some effective works on the tracking control with open chain[8]. Wang et al.[9] developed a robust control method for closed chain dual-arm space robot; however, the system need feedback force information of end-effector.

This paper studies the tracking control scheme of a dual-arm space robot to manipulate a target. The dynamic equations of open chain dual-arm space robot are derived by applying the Lagrange equations. With the closed-loop constraints equations, the reduced-order equations of the dual-arm space robot with closed-chain are obtained. Based on the dynamic model, a recurrent robust fuzzy neural network control is proposed for control the position and attitude of the base and load. The uncertain part is approximated by neural network on-line, and H_∞ robust item is used to overcome the approximation error. Global asymptotic stability is proven by using Lyapunov’s method. The numerical simulations show the effectiveness of the proposed control scheme.

2 SYSTEM DYNAMICS AND KINEMATICS ANALYSIS OF DUAL-ARM SYSTEM
The planar space robot consists of a free-floating base and two rigid manipulators, as shown in Fig1. Choosing origin O is located at an arbitrary point in planar, the inertia coordinate inertial coordinate frames XOY is built. Choosing the local frame coordinate of base and each link x_iOy_i $(i = 1, 2, \cdots, 6)$. $O_b \cdots O_9$ are the mass center of base and load. O_i $(i = 1, 2, \cdots, 6)$ is the mass center of each link. O_m is on the line connection between O_b and O_i. l_i $(i = 1, 2, \cdots, 6)$ is the length of $O_b O_i$ and $O_9 O_i$ are d_l and d_g. The distance of mass center of load O_m to end-effector are d_l and d_g. The dual-arm space robot forms a closed-chain after the capture operation.

\[\theta = \begin{bmatrix} \theta_1 & \theta_2 & \theta_3 \end{bmatrix} \]

τ is the generalized control torque. For the convenience of description, system dynamic equations is rewritten as:

\[M\ddot{q} + H\dot{q} = \tau \]

where $M \in \mathbb{R}^{n \times n}$ a symmetric positive definite system inertia matrix. $H\dot{q} \in \mathbb{R}^{n \times 1}$ is a vector of the centripetal and coriolis factors. For arbitrary $x \in \mathbb{R}^{n \times 1}$, it satisfies that:

\[x^T(M - 2H)x = 0 \]

$M - 2H$ is skew symmetric.

2.2 Kinematics and dynamics analysis of closed-chain system

The dynamic equations of reduced-order form for the closed-chain system will be established in this section. Selecting a motion reference point b at the cutting surface. The motion reference points have same position and speed in inertial frame and body-fixed coordinate system.

According to open chain system of geometric relations, the position vectors from motion reference points to O_i are given as:

\[\begin{align*}
 r_{bi} &= (x_{bi}, y_{bi}) \\
 r_{bi} &= r_{bi} + l_i e_{a1} + l_i e_{a2} + (d_l + d_g) e_{a3} \\
 r_{bi} &= (x_{bi}, y_{bi}) \\
 r_{bi} &= r_{bi} + l_i e_{a1} + l_i e_{a2} + d_g e_{a3} \\
 r_{bi} &= (x_{bi}, y_{bi}) \\
 r_{bi} &= (x_{bi}, y_{bi}) \\
\end{align*} \]

\mathbf{r}_{bi} and \mathbf{r}_{ai} are position vectors from O_i and O_a to O_b in base-fix coordinate, e_{ai} is base vector.

Depending on the characters of motion reference points, thus

\[N_i \dot{\theta}_l = N_i \dot{\theta}_r \]

Let

\[U = [I_{6 \times 6}, \mathbf{U}_1^T] \]

\[U = [I_{6 \times 6}, \mathbf{U}_1^T] \]
\[U_i = [O_{i\times n} \quad N_{i}^T N_{i}] \]
(8)

\[I_{n \times n} \text{ is a } n \times n \text{ unit matrix, } O_{n \times n} \text{ is a } n \times n \text{ zero matrix.} \]

The generalized coordinates matrix of closed-chain system is defined as:
\[q_i = [x_0 \quad y_0 \quad \theta_0 \quad \theta_i] \]
(9)

According to Eq.(9), Eq. (10), Eq. (11) and Eq. (12), can get:
\[\dot{q} = Uq, \]
(10)

Differentiating Eq. (10), we have
\[\ddot{q} = U^T \ddot{q} + \dot{U}^T \dot{q}, \]
(11)

Substituting Eq.(10), Eq.(11) into Eq.(3), the dynamic equations of closed-chain are obtained as follow:
\[\ddot{q} = \ddot{q} + \ddot{q}, \]
(12)

where
\[\ddot{q} = \ddot{q} + \ddot{q}, \]
(13)

\[\ddot{q} = \ddot{q} + \ddot{q}, \]
(14)

\[\ddot{q} = \ddot{q} + \ddot{q}, \]
(15)

In the dynamic equations of closed-chain system, For arbitrary \(y \in \mathbb{R}^{n \times 1}, \ddot{q} \in \mathbb{R}^{n \times 1}, \ddot{q} \in \mathbb{R}^{n \times 1} \) still satisfy that:
\[y^T (\dddot{q} - 2 \dddot{q}) y = 0 \]
(16)

\[\dddot{q} - 2 \dddot{q} \] is skew symmetric.

So far, we have obtained the dynamic equations of closed-chain system.

3 RECURRENT ROBUST FUZZY NEURAL NETWORK CONTROL

3.1 Recurrent robust fuzzy neural network

The four-layer recurrent fuzzy neural network\(^{(11)}\) is shown in Fig.2.

Input layer
\[\text{Input} = [\text{Input}]^{(1)} = [x_i] (i = 1, 2, ..., m) \]
(17)

Superscript means which layer the input and output belong to.

Member function layer:
\[\text{Member} = [\text{Member}]^{(1)} = \mu(\text{Input})^{(1)} = e^{-\frac{\|\text{Input} - \text{Center}\|}{\text{Width}}} \]
(18)

Fuzzy reasoning layer:
\[\text{Output}^{(3)} = \prod_{k=1}^{l} w_{i,k} \text{Input}^{(3)} (k = 1, 2, ..., l) \]
(19)

![Figure 3: Structure of recurrent fuzzy neural network](image)

Output layer, the layer of defuzzification:
\[y_r = \text{Output}^{(4)} = w_{i,r} \text{Input}^{(4)} (r = 1, 2, ..., s) \]
(20)

Output can be written as follow:
\[u = W^T \Phi \]
(21)

3.2 Control design of closed chain system

In order to control the position and attitude of both the base and the load, the output matrix of system is defined as:
\[X = [x_0 \quad y_0 \quad \theta_0 \quad x_m \quad y_m \quad \theta_m]^T \]
(22)

Differentiating the Eq.(22):
\[\dot{X} = J_s(q_i) \dot{q}_i \]
(23)

\(J_s(q_i) \in \mathbb{R}^{n \times n} \) is the Jacobian matrix.

Defining the output error as follow:
\[e = X - \tilde{X} \]
(24)

With Eq.(24), the dynamic equations of closed-chain system can be rewritten as:
\[M \ddot{X} + H \dot{X} = \dddot{X} \]
(25)

Where \(M \in \mathbb{R}^{n \times n}, H \in \mathbb{R}^{n \times n} \) is the Jacobian matrix.

Since the uncertain parameters of system, we can get:
\[\tilde{M} \ddot{X} + \tilde{H} \dot{X} + f(\delta) = \dddot{X} \]
(26)

Where \(\tilde{M} \), \(\tilde{H} \) is nominal model, \(\Delta M \), \(\Delta H \) is model error, and \(f(\delta) = M(\Delta \dot{X} + \Delta H \dot{X}) \) is model error.

Using recurrent fuzzy neural network to approximate
the unknown part $f(\delta)$ as follow:

$$f(\delta) = W^T \Phi + \Delta \delta$$ \hspace{1cm} (27)$$

where W^* is the optimal weight matrix. Φ is a column correlation with primary function, $\Delta \delta$ is approximate error.

For the uncertain parameters space robot, design the control as follow:

$$\tau = \dot{M}_x(\dot{X}_d + K_1 \dot{e} + K_2 e) + \dot{H}_x \dot{X} + W^T \Phi + \mu$$ \hspace{1cm} (28)$$

μ is Robust control term, which is used to eliminate the approximate error.

With Eq.(28) and Eq.(25), we have:

$$\dot{M}_x(\dot{e} + K_1 \dot{e} + K_2 e) - \dot{W}^T \Phi - \Delta \delta + \mu = 0$$ \hspace{1cm} (29)$$

where $\dot{W} = W^* - W$.

Denote $Y = [y_1^T, y_2^T] = [e^T, \dot{e}^T]^T$, we have:

$$\begin{bmatrix}
\dot{y}_1 \\
\dot{y}_2
\end{bmatrix} =
\begin{bmatrix}
0 & I_{6 \times 6} \\
-K_y & -K_y
\end{bmatrix}
\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix} -
\begin{bmatrix}
-K_y & -K_y, y_1 + (\dot{e} + K_1 \dot{e} + K_2 e)
\end{bmatrix}$$ \hspace{1cm} (30)$$

The state space equations can be written as:

$$\dot{Y} = AY + B\dot{M}_x(\dot{W}^T \Phi + \Delta \delta - \mu)$$ \hspace{1cm} (31)$$

where $A = \begin{bmatrix} 0 & I_{6 \times 6} \\ -K_y & -K_y \end{bmatrix}, B = \begin{bmatrix} 0_{6 \times 6} \\ I_{6 \times 6} \end{bmatrix}$, The approximation errors of the system can be regard as external disturbance, and $z = \dot{M}_x(\Delta \delta \in L_2[0, \infty)$. There is a positive constant O_δ let $\int_0^t \|\dot{M}_x(\Delta \delta\|^2 dt \leq O_\delta$.

Robust item is designed as follow:

$$\mu = \dot{M}_x R^T B^T P y$$ \hspace{1cm} (32)$$

$R = R^T$ is gain matrix, positive definite matrix P satisfy the Riccati equation:

$$PA + A^T P + PB(I - \frac{1}{\omega^2} I_{6 \times 3} - 2 R^T)B^T P = -Q$$ \hspace{1cm} (33)$$

where ω is disturbance attenuation index Q is positive definite matrix

Choosing the weights of the adaptive law as follow:

$$\dot{W} = A^T \Phi y^T PB \dot{M}_x$$ \hspace{1cm} (34)$$

To verify the stability and H_∞ tracking characteristics of the system, the Lyapunov function is defined as follow:

$$V = \frac{1}{2} y^T P y + \frac{1}{2} \text{tr}(\dot{W}^T A \dot{W})$$ \hspace{1cm} (35)$$

Differentiating Eq.(35)

$$\dot{V} = \frac{1}{2} y^T P y + \frac{1}{2} y^T \dot{P} y + \frac{1}{2} \text{tr}(\dot{W}^T A \dot{W}) + \frac{1}{2} \text{tr}(A \dot{W}^T A \dot{W})$$

$$= \frac{1}{2} \left[Ay + B \dot{M}_x(\dot{W}^T \Phi + \Delta \delta - \mu) \right]^T P y + \frac{1}{2} y^T P \left[Ay + B \dot{M}_x(\dot{W}^T \Phi + \Delta \delta - \mu) \right] + \frac{1}{2} \text{tr}(\dot{W}^T A \dot{W})$$

$$= \frac{1}{2} y^T (PA + A^T P + PB(I - \frac{1}{\omega^2} I_{6 \times 3} - 2 R^T)B^T P) y - \frac{1}{2} \left(B^T P y - \omega \tilde{Z} \right)^T \left(B^T P y - \omega \tilde{Z} \right) + \frac{1}{2} \omega^2 \tilde{Z}^T \tilde{Z}$$

$$\leq \frac{1}{2} y^T Q y + \frac{1}{2} \omega^2 \tilde{Z}^T \tilde{Z}$$ \hspace{1cm} (36)$$

Integrating Eq.(36) from 0 to T :

$$V(T) - V(0) \leq \frac{1}{2} \int_0^T y^T Q y + \frac{1}{2} \omega^2 \int_0^T \tilde{Z}^T \tilde{Z} dt$$ \hspace{1cm} (37)$$

Cause $V(T) \geq 0$, we have:

$$\frac{1}{2} \int_0^T y^T Q y \leq V(0) + \frac{1}{2} \omega^2 \int_0^T \tilde{Z}^T \tilde{Z} dt$$

So the system tracking errors satisfy H_∞ tracking characteristics of the system.

\bar{r} and τ can be rewritten as:

$$\bar{r} = [\bar{r}_y, \bar{r}_\dot{y}]^T$$ \hspace{1cm} (38)$$

$$\tau = [\tau_\dot{y}, \tau_y, \tau']^T$$ \hspace{1cm} (39)$$

From the preview derivation process, we have:

$$\bar{r}_\dot{y} = \bar{r}_y$$ \hspace{1cm} (40)$$

$$\begin{bmatrix}
\bar{r}_\dot{y} \\
\tau_y \\
\tau_\dot{y}
\end{bmatrix} = E \Omega \left(\Omega E \Omega^T \right)^{-1} \bar{r}_y$$ \hspace{1cm} (41)$$

Where E is gain matrix, $\Omega = [I_{3 \times 3} (N_y N_z)^T]$.

4 NUMERICAL SIMULATION

A planar free-floating dual-arm space robot system is experimentally simulated by using the proposed controller. The physical parameters of the physical parameters of closed-chain system are defined as:

$d_y = 1.062m, d_1 = 0.5m, d_2 = 0.5m, l_i = 2m (i = 1, 2, 4) , l_j = 0.5m (i = 3, 6) , m_y = 200kg, m_m = 50kg, m_l = 20kg (i = 1, 2, 4, 5) , m_j = 5kg (j = 3, 6) , I_y = 0kg \cdot m^2, I_m = 10kg \cdot m^2, I_l = 10kg \cdot m^2 (i = 1, 2, 4, 5) , I_j = 2kg \cdot m^2 (j = 3, 6)$.

The initial state of base and load is:
The desired state of base and load is:

\[X_d = [0 \text{m} \ 0 \text{m} \ 0^\circ \ 0 \text{m} \ 3 \text{m} \ 0^\circ]^T \]

The proposed control method can be extended to multi-arm and multi-link space robot system. The control scheme dispense with accurate system model or linear parameterization of the system dynamic equations.

Acknowledgement

This work is supported by the National Natural Science Foundation of China (No. 11372073, 11072061).

References

