
ABSTRACT

Teleoperated robots offer safe means for working in

environments that are life-threatening or otherwise

inaccessible for humans. Due to the severe

conditions in space, technologically advanced robots

are frequently adopted for unmanned planetary

exploration and carrying out maintenance tasks on

manned missions. As the robots grow technically

more complicated and capable, the control interfaces

must, in turn, become simpler. We have developed

TeMoto, a speech and hand gesture based

supervisory teleoperation software for hardware

agnostic mobile manipulation. TeMoto addresses

several chronic technical issues associated with most

teleoperation systems including the operator’s SA,

communication delays, and interface intuitiveness.

This paper presents the functional description of

TeMoto’s resource management tool – Resource

Registrar (RR) – by exemplifying it with a

demonstration where a series of sensor failures are

induced on a remote mobile manipulator robot.

Despite the sensor failures, the software remains

operational and a visual representation of the

surroundings is sustained for the operator.

1 INTRODUCTION

Teleoperated robots offer safe means for carrying out

work in environments that are life-threatening and/or

otherwise inaccessible for humans [1], [2]. In

addition to space, such robots can be used for

underground mining, radioactive decommissioning,

search and rescue, fighting wildfires, etc. The

common denominator for most telerobotics

applications is the unpredictability of the remote

location the robot is expected to operate in.

Due to the severe conditions in space, robots are

frequently adopted for unmanned planetary

exploration and carrying out maintenance tasks on

manned missions. There are already some

remarkable space robots, such as NASA’s Roboaut-2

and Valkyrie as well as many planetary rovers [2].

The state-of-the-art robots are yet to reach full

autonomy and therefore, the need for human operator

persists [3]. However, with the development of

assistive software algorithms, it is possible to

transition some aspects of robotic tasks from humans

to the controller – a type of control regarded as shared

autonomy. For instance, an algorithm can take care

of the self-collisions of a robot manipulator and plan

a collision-free path from one end-effector pose to

another. Some advanced teleoperation interfaces

incorporate predictive simulations of the future states

of the robot and thus enable a more efficient use of

the robot and operator’s time [4].

As the robots grow technically more complicated and

capable, the control interfaces must, in turn, become

simpler [5]. One can easily see the analogy from the

history of personal computers: the first computers

could only be wielded by trained experts whereas

modern computers – that are by far more

complicated and computationally powerful – can be

used by small children through highly intuitive User

Interfaces (UI). An intuitive UI commonly utilizes

the natural elements of human communication (e.g.,

speech, gestures, mechanoreception) and are, thus,

frequently applied in teleoperation applications. Yet

task and UI specific requirements often creep into the

underlying architecture of the teleoperation software,

which vastly reduces the software modularity and

reuse.

Even the best UI design can only provide what the

back end of the system supports. If the robot is

capable of partially autonomous (sub)task execution,

the role of the UI is to deliver access and ensure

usability of these features for the operator. It is

reasonable to claim that the quality and availability

of autonomous capabilities may change depending

on the nature, criticality, and environment of the task.

Preferably, the teleoperation interface is able to

adjust to the situation while sustaining familiar user-

experience for the operator. Also, from the

developer’s perspective, the system should be

scalable and its capabilities extendable in well-

structured and unified way.

Given the above considerations, we have designed a

ROS-based telerobotics software development

framework – TeMoto [6] – that inherently supports

the main modalities of human communication and

advocates a modular design of software. TeMoto

provides the functionality to ground instructions in

Natural Language (NL) to executable actions, i.e.,

modular pieces of code that allow:

 integrating any available hardware and

software resources, e.g., sensors,

manipulators, object recognition algorithms;

 executing any user specific code with no

restrictions to the use of third-party software

libraries.

INTUITIVE “HUMAN-ON-THE-LOOP” INTERFACE FOR TELE-

OPERATING REMOTE MOBILE MANIPULATOR ROBOTS

*Robert Valner
1,2

, Veiko Vunder
 2
, Andy Zelenak

2
, Mitch Pryor

2
, Alvo Aabloo

1
, Karl Kruusamäe

1

1Intelligent Materials and Systems Lab, University of Tartu, Nooruse 1, Tartu, Estonia
2Nuclear and Applied Robotics Group, The University of Texas at Austin, TX, USA

For telerobotics in space, power consumption and

fault tolerance are mission critical factors.

Complicated remote systems, such as planetary

rovers, often contain a variety of sensors that

complement each other’s functionality. A mobile

robot can have sensors such as 2D and 3D LIDARs

for obstacle detection and mapping, cameras for

visual confirmation, and other sensors that help

interpret the surrounding environment. In order to

achieve operational reliability, the more critical

systems (including sensors) are duplicated [7] but

there may also be some redundancy from the

overlapping capabilities of different sensors. For

instance, a 3D pointcloud from a LIDAR can still

give the operator some understanding of rover’s

immediate surroundings after all camera systems

have failed.

This paper presents the main functionalities of

TeMoto’s resource management tool – Resource

Registrar (RR) – from the perspective of mobile

manipulator robot platform. A brief overview is

given about the architecture of TeMoto and its NL

grounding methodology. More specifically, the RR

provides functionality to:

 maintain a registry of active resources, their

clients and dependencies of sub-resources,

 dynamically start and stop resources,

 notify the clients in case of resource status

updates (e.g., resource failure).

All in all, the RR helps to reduce energy consumption,

efficiently utilize the available processing power, and

support dynamic modifications to the hardware and

UI layout of the teleoperation system. The next

section of this paper gives an overview of related

efforts, followed by a description TeMoto’s RR. We

demonstrate the practicality of the RR on a remote

inspection sensor failure scenario.

2 PREVIOUS WORK

The original objective of TeMoto was to make

controlling advanced robotic platforms intuitive for

non-roboticist workers during inspection and

manipulation in potentially hazardous environments,

e.g., nuclear sites. TeMoto addresses several chronic

technical issues associated with most teleoperation

systems including the operator’s Situational

Awareness (SA), communication delays, and

interface intuitiveness. To improve SA and reduce

operator’s mental modelling, we fuse relevant

sensory data from the robot as well as the human into

a single mixed-reality (MR) scene (Figure 1). The 3D

MR scene can be displayed on a 2D computer screen

(Figure 1a) as well as using a virtual reality headset

(Figure 1b). The operator is able to change his or her

point-of-view on the MR scene and trigger robot

movements that are best suited for a given task. The

operator controls the robot and the interface by

means of intuitive hand gestures and verbal

instructions. TeMoto is designed to be hardware-

agnostic and has already been demonstrated on

several robotic platforms (e.g., Clearpath Husky with

two UR5 manipulators, KUKA youBot, and

Yaskawa Motoman SIA5) to achieve large scale

navigation (dozens of meters) and small (sub-

millimeter) scale manipulation.

The first generation of TeMoto used Leap Motion

Controller to track operator’s hands as s/he was

seizing gestural control of any of the robot’s end-

effectors (Figure 1a) [6], [8]. Additionally, a physical

dial knob helped the operator to scale real-life hand

movements to the most suitable range on the robot,

thus enabling comfortable working ergonomics

despite the requirements of the task. The same

operator interface and modality could be used to

navigate a robot across a warehouse (dozens of

meters) and thread a needle with an eye width less

than 1 mm [6], [8].

a)

b)

Figure 1: a) Operator interface of TeMoto using

Leap Motion Controller to track hand poses, turn

knob for scaling, and MR scene visualization on 2D

screen. b) Visualization of TeMoto MR scene for

virtual reality headset.

Instability and inefficiency due to time delays as well

as any potential errors due to unwilling gestures were

all mitigated by utilizing a supervisory (“human-on-

the-loop”) controller. For instance, when basic path

planning capabilities were integrated to TeMoto, the

operator could simply point to a place within the MR

scene (Figure 1) and say, ‘Robot please go’ to trigger

motion planning algorithm and the autonomous

movement of robot. Another advantage of the

supervisory controller is that by delegating any task

the robot is able to complete on its own, we reduce

the workload of the operator and free up time that can

potentially be used to control a fleet of robots.

3 RESOURCE REGISTRAR (RR)

3.1 Overview

Since the inception, TeMoto has grown into a ROS-

based framework and toolbox that facilitates the

creation of supervisory (“human-on-the-loop”)

teleoperation systems [9]. TeMoto can be divided

into three hierarchical abstraction layers (Figure 2):

 Supervisory layer that handles the

interaction with the operator and directs the

rest of the system.

 Management layer is responsible for

acquiring, managing and maintaining

knowledge about resources via respective

manager subsystems.

 Resource Access layer allows the

management layer to access resources that

are external to TeMoto, e.g., sensors and

actuators (in the format of a ROS node).

Figure 2: Architecture of TeMoto.

 doi.org/10.5281/zenodo.1226854

The architecture of TeMoto centers around the

concept of a resource, i.e., something which is

provided upon a request. Many things can be

resources: sensors and algorithms are resources for

acquiring and manipulating data; information about

physical objects in the surrounding environment or a

planet’s weather can be regarded as resources for

decision-making.

The given definition for a resource provides a lot of

flexibility (e.g., resources that combine sub-

resources) but in order to facilitate this flexibility

efficiently, the RR was developed to solve the

following issues:

 How to share a resource without allocating

the same resource multiple times (multiple

clients)?

 How to make sure that no clients are using

the resource when deallocating it?

 How to notify clients if the status of a

resource changes (e.g., the resource has

failed)?

 How to notify the involved clients upon

receiving a resource status update message

from a sub-resource?

In TeMoto, every subsystem keeps track of its own

use of resources, i.e., has its own instance of RR

which contains a registry of all active inbound and

outbound resource queries. Such approach allows the

system to scale easily, i.e., a complex hierarchy of

resources can be created without encountering the

aforementioned issues. Hence TeMoto’s RR

provides the core functionalities for designing a

fault-tolerant and resource-efficient robotic systems.

The next subsection describes the process of

requesting a resource, followed by details about

implementation of RR in subsection 3.3.

3.2 Actions and Resource Requests

The supervisory layer is responsible for parsing the

NL instructions into executable actions, the other

layers are responsible for providing resources that

were requested by the actions.

Figure 3: NL grounding in TeMoto. a) The operator

gives an instruction in NL. b) The instruction is

mapped to an action tree. c) Actions execute the

developer-defined code and request resources from

the Management Layer.

doi.org/10.5281/zenodo.1227081

Figure 3 illustrates the process of grounding NL

instructions into actions. The Supervisory Layer

parses the NL utterance, e.g., “track the hand and

show it on the screen” (Figure 3a), and maps every

recognized instruction to an action and thus forming

an action tree. The action tree is then executed,

starting from the root node of the tree (Figure 3b).

Note that the tree could also contain parallel branches.

The actions access system resources through the

manager interfaces (Figure 3c). Once an action

finishes, it can stay in the memory (asynchronous

action), thus maintaining the allocated resources, or

it can destruct right after execution (synchronous

action), thus automatically releasing allocated

resources (feature of the RR).

Figure 4: Example of resource abstraction. a) An

action requires the position of operator’s hand.

b) The information about the hand is retrieved by

combining two resources – a camera feed and an

algorithm that uses the feed to detect the hand.

c) The request to initiate a specific camera

“cam_x” and specific algorithm “alg_y” is

directed to the External Resource Manager.

doi.org/10.5281/zenodo.1227105

The term abstraction layer emphasizes the idea that

a client of a given resource is oblivious to its origins.

For example, if an action requires the position of

operator’s right hand (Figure 4a), it does not know

that the resource (hand position) may have actually

been acquired by combining two sub-resources

(Figure 4b) – a camera and an algorithm that extracts

information about hands from the camera feed. If any

of the sub-resources fail, the action (and all

mediating subsystems) must be notified about the

event (resource status update) to make appropriate

rearrangements.

Whereas Figure 4 illustrates only one specific

example, in general all of the following could be true

about a resource:

 The same resource could have been

requested by different actions.

 The same action could request different

resources.

 A resource could hierarchically depend on

multiple layers of sub-resources.

Therefore, every component of TeMoto that

provides and requests resources needs to maintain

information about incoming and outgoing resource

requests. RR was designed exactly for these purposes.

3.3 Implementation of Resource Registrar

The RR is the central component of every subsystem

of TeMoto to provide and request resources. The RR

is comprised of three main parts (Figure 5):

a) RR Servers process the incoming resource

requests.

b) RR Clients mediate the outgoing resource

requests.

c) Active Resource Registry keeps a record of

all active in- and outbound resource queries.

a) Active Resource Registry

The Active Resource Registry (hereinafter referred

to as registry) is needed for knowing the currently

active/instantiated resources, e.g., a sensor which is

in operational state. The resource is activated by the

first request for the resource. Every resource entry in

the registry contains information about the query

(resource request and response) and information

about the clients that are using this resource.

b) Resource Registrar Servers

A subsystem in TeMoto’s Management Layer

(Figure 2) could provide multiple resource types

within the same subsystem. For example, the Context

Manager subsystem provides information about the

objects in the surrounding environment, and it also

provides a service for tracking the objects – these are

regarded as separate resource types.

Every resource type has its own dedicated callback

function, similarly to the concept of native ROS

services where incoming requests are handled inside

a callback. The callback functions are registered in

the RR and after registration, a dedicated RR Server

is created (S0 to Sm in Figure 5). The RR Server

maintains information about unique (decided by a

predefined metric) active resources inside the

registry. Every time an RR Server receives a unique

request, it:

1. directs the request to the callback,

2. retrieves a response from the callback,

3. adds a new resource entry about the query to

the registry,

4. and returns the response to the client that

initiated the query (incoming query in

Figure 5).

If the request of the incoming query is not unique (i.e.,

it is already in the registry), then the response is

retrieved from the registry without invoking the

callback. The information about the new client is

added to the corresponding resource entry.

c) Resource Registrar Clients

Analogously to RR Servers, every RR Client (C0 to

Cn in Figure 5) corresponds to a specific resource

type. RR Clients are used for making resource

queries to other RRs, which is again similar to the

concept of native ROS clients where an instance of a

client is used to manage the connection to a server.

In order to mitigate the risk of circular dependencies,

an RR does not support RR Client queries to the RR

Servers within the same RR. Hence RR Clients are

used only for requesting resources that are not

managed by the same RR. Since every subsystem

normally has one RR, the queries are targeted to the

RRs of other subsystems (e.g., the flow shown in

Figure 4).

The RR Client maintains information about unique

active resource queries inside the registry. If the

invoked query is not unique, then the response is

retrieved from the registry without invoking the RR

Client call procedure.

d) RR usage and resource dependencies

The RR contains both the RR Client and RR Server

Application Programming Interfaces (API), which

are utilized by TeMoto’s subsystems based their

functionality. For example, in Figure 5b, the depicted

“Subsystem_0” only utilizes RR Clients because it is

not providing any resources. Analogously, the

“Subsystem_2” only hosts RR Servers. Most

subsystems in the Management Layer (Figure 2)

provide resources that depend on sub-resources

(“Subsystem_1” in Figure 5b; Figure 4b, c), resulting

in a resource dependency, illustrated in the Active

Resource Registry in Figure 5.

The dependency is registered when the RR Client is

invoked during RR Server callback procedure.

Hence the dependencies are query-based and not

fixed statically to a certain resource type. By

knowing the resource dependencies, a deallocation

of a top-level resource will automatically trigger the

deallocation of dependent resources. It eliminates the

issue of dangling resources. Additionally, the

dependency allows forwarding resource status

information to appropriate clients. For example, if

the External Resource Manager in Figure 4 detects

the failure of “cam_x”, it will use the status info API

of the RR to send a failure message to all related

clients. Then the Sensor Manager will receive the

status message and use the status info API to forward

the message to all related clients. Finally, the action

will receive the resource failure message from the

Context Manager and decides on the next move

(request a substitute resource, terminate, etc.).

4 DEMONSTRATION OF SENSOR

REDUNDANCY

TeMoto’s RR provides the core functionalities for

the developer to design a fault-tolerant and resource-

efficient robotic system. In order to evaluate the

enabling capabilities of the RR, we devised a sample

teleoperation scenario, where the critical part of the

mission was to sustain continuous visual feedback

about the surrounding environment in the presence of

a) b)

Figure 5: a) Structure of the Resource Registrar. b) Resource Registrar usage.

doi.org/10.5281/zenodo.1227113

cascading sensor failures. We demonstrate how

resources can be dynamically and easily rearranged

via the resource status propagation mechanism of the

RR and TeMoto’s Management Layer API.

4.1 Description of the Setup

A dual-arm mobile robot (NRG VaultBot [10]) was

used for the demonstration. The robot has 2

Universal Robots UR5 manipulators mounted on the

mobile Clearpath Husky base. The robot is equipped

with a SICK LMS511 2D LIDAR (mounted to the

front of Husky base), a rotating Hokuyo UTM-30LX

2D LIDAR (mounted to one UR5 arm), and Intel

RealSense D435 RGB-D camera. The arm-mounted

2D LIDAR was used to create 3D pointclouds by

spinning the LIDAR and stitching the laserscans [11].

A TeMoto action was implemented to maintain the

goal of the mission by rearranging the resources

every time a resource failure status message was

received.

The scenario started with the operator giving an NL

instruction – “Show the environment” – to TeMoto.

As a result, the action with the following two

functions was invoked.

1. The first function (invoked during the initial

normal operation) requested the Sensor

Manager to start a RGB-D camera and

requested the Output Manager to show the

pointcloud produced by the RGB-D camera

on the screen.

2. The second function was invoked every time

a resource failure message was received. It

executed the same procedure as in the first

function, but with a different sensor.

The sensor allocation hierarchy was defined from the

perspective of human perception. An overlay of a

video feed to a pointcloud gives potentially the best

perception of objects around the robot. But even if

the video link fails, a regular 3D pointcloud is helpful

for an operator and gives a better understanding of

the surroundings than a minimalistic 2D laserscan.

Therefore, the sensors were prioritized as follows:

1. RGB-D camera – yielding 3D pointcloud

with RGB overlay (Figure 6b)

2. Arm-mounted 2D LIDAR – yielding regular

3D pointcloud (Figure 6c)

3. Base-mounted 2D LIDAR – yielding 2D

laserscan (Figure 6d)

During the demonstration, resource failures were

physically induced by unplugging the sensor cables

from the robot. First the RGB-D camera was

unplugged, followed by unplugging of the arm-

mounted 2D LIDAR.

4.2 Results

Figure 6a shows the Vaultbot in the demonstration

environment. Figure 6b depicts the operator’s

perspective on the Mixed Reality (MR) scene during

initial normal operation. Next, a depth camera failure

a) b)

c) d)

Figure 6: A test scenario which demonstrates the core functionalities of RR. a) Image of the actual environment.

b) Environment sensed via RGB-D camera. c) Environment sensed via arm-mounted spinning 2D LIDAR.

d) Environment sensed via base-mounted 2D LIDAR.

causes the TeMoto action to preserve the visual

feedback in the MR scene via arm-mounted LIDAR

(Figure 6c). After a resource failure was induced to

the arm-mounted LIDAR, the TeMoto action

invoked the base-mounted LIDAR to provide 2D

laserscan representation of the surroundings (Figure

6d). The switching between different modes of visual

representation and acquisition of depicted sensor

feeds occurs seamlessly for the operator and is

attributed to the RR.

5 DISCUSSION

The RR is a tool which is embedded in all subsystems

of TeMoto. It helps to use resources efficiently and

allows keeping track of complex sub-resource

relations via the Active Resource Registry. Also,

based on the information kept in the registry, the RR

provides the capability to back propagate resource

status information, e.g., device failures.

The next step in RR development is to increase the

reliability and robustness of the RR by developing a

P2P (peer-to-peer) protocol for keeping a copy of the

registry in neighboring RRs (RRs which queried or

provided resources for the given RR instance). Since

the registry contains information about active

resources and their dependencies, it is crucial to

recover its state after a subsystem failure.

Furthermore, the distributed approach for backing up

the registry is potentially more robust to failures

compared to a centralized system.

6 CONCLUSIONS

We demonstrated an intuitive “human-on-the-loop”

teleoperation framework TeMoto and its Resource

Registrar on a mobile manipulation platform where

sensor failures were externally induced. A system

that was responsible for visualizing robot’s

immediate surroundings for the operator was able to

fulfill its objective by leveraging from RR to

seamlessly switch between several sensor feeds as

failures occurred.

TeMoto is growing to become a framework that

facilitates integration of existing and future

capabilities of other teleoperation software packages

(e.g., predictive mechanisms during delay [4]). It

provides tools for developers and ensures usability

through modular approach and hardware

agnosticism.

The independence from hardware has been

demonstrated by using TeMoto on a wide range of

robots, e.g., Clearpath Husky with two UR5

manipulators, KUKA youBot, and Yaskawa

Motoman SIA5. Additionally, the practicality of

TeMoto’s MR scene visualization has been

demonstrated on regular computer displays as well as

with immersive virtual reality headsets [11], [12].

The herein presented concepts of resources and RR

render TeMoto truly universal because any resource

(sensor or algorithm) can be used interchangeably as

long as it serves the main function.

Acknowledgements

This research was in part supported by Los Alamos

National Laboratory and Estonian Centre of

Excellence in IT (EXCITE) funded by the European

Regional Development Fund. R.V. and K.K.

acknowledge Dora Pluss, receiving funding from the

European Regional Development Fund. V.V. would

like to thank the Research Scholarship Program of

Baltic-American Freedom Foundation.

References

[1] T. B. Sheridan, “Telerobotics,” Automatica, vol.

25, no. 4, pp. 487–507, 1989.

[2] T. Fong, J. Rochlis Zumbado, N. Currie, A.

Mishkin, and D. L. Akin, “Space Telerobotics:

Unique Challenges to Human–Robot

Collaboration in Space,” Rev. Hum. Factors

Ergon., vol. 9, no. 1, pp. 6–56, 2013.

[3] W. Carey, P. Schoonejans, B. Hufenbach, K.

Neergard, F. Bosquillon de Frescheville, J.

Grenouilleau, A. Schiele, “METERON: A

mission concept proposal for preparation of

human-robotic exploration,” presented at the

Global Space Exploration Conference,

Washington D.C., 2012.

[4] R. Burridge and S. Gee, “Supervising a

humanoid robot across time delay,” in

Proceedings of i-SAIRAS 2016: The 13th

International Symposium on Artificial

Intelligence, Robotics and Automation in Space

(i-SAIRAS), 2016.

[5] H. A. Yanco, A. Norton, W. Ober, D. Shane, A.

Skinner, and J. Vice, “Analysis of human-robot

interaction at the DARPA robotics challenge

trials,” J. Field Robot., vol. 32, no. 3, pp. 420–

444, 2015.

[6] R. Valner, K. Kruusamäe, and M. Pryor,

“TeMoto: Intuitive Multi-Range Telerobotic

System with Natural Gestural and Verbal

Instruction Interface,” Robotics, vol. 7, no. 1, p.

9, 2018.

[7] G. Visentin, M. van Winnendael, and P. Putz,

“Advanced mechatronics in ESA’s space

robotics developments,” in 2001 IEEE/ASME

International Conference on Advanced

Intelligent Mechatronics, 2001, pp. 1261–1266.

[8] K. Kruusamäe and M. Pryor, “High-precision

telerobot with human-centered variable

perspective and scalable gestural interface,” in

Proceedings - 2016 9th International

Conference on Human System Interactions (HSI

2016), 2016, pp. 190–196.

[9] R. Valner, V. Vunder, M. W. Pryor, and A.

Zelenak, “TeMoto 2.0: Source Agnostic

Command-to-Task Architecture Enabling

Increased Autonomy in Remote Systems,” in

Proceeding of the 2018 Waste Management

Symposium, Phoenix, AZ, 2018.

[10] A. Sharp, K. Kruusamäe, B. Ebersole, and M.

Pryor, “Semiautonomous Dual-Arm Mobile

Manipulator System with Intuitive Supervisory

User Interfaces,” in IEEE Workshop on

Advanced Robotics and its Social Impacts

(ARSO), 2017.

[11] V. Vunder, R. Valner, C. McMahon, K.

Kruusamäe, and M. Pryor, “Improved

Situational Awareness in ROS using

Panospheric Vision and Virtual Reality,” in

2018 11th International Conference on Human

System Interactions (HSI), 2018, submitted.

[12] A. Zelenak, V. Vunder, and M. Pryor, “Data-

Driven Design of an Efficient User Interface for

Mobile Manipulation,” in 2018 IEEE/RSJ

International Conference on Intelligent Robots

and Systems (IROS), 2018, submitted.

