
ABSTRACT 
Because close collaboration between the crew and 
mission control will not be practical for inter-
planetary exploration, NASA envisions the need for 
an intelligent autonomous agent that can continually 
integrate data from the spacecraft or lunar/planetary 
base to advise the crew during their mission. Over 
the past several years, TRACLabs, in support of 
NASA and other government agencies, has 
developed a number of software components that 
can be used in such an agent, and has developed an 

architecture called a cognitive architecture for space 
exploration (CASE). This paper describes that 
architecture and discusses its feasibility for use in 
space exploration.  

1 INTRODUCTION 
In space operations, carrying out the activities of 
mission plans by executing procedures often 
requires close collaboration between ground 
controllers who have deep knowledge of the 
spacecraft’s systems and crewmembers who have 
in-situ situation awareness. Because of the light 

 
Figure 1 The top-level CASE architectural design.  The planner generates an activity plan whose primitives 
are procedures run by the execution system, which in turn interfaces to the hardware via control software.  
The planning and execution systems draw information from and update the system ontology, stored in the Web 
Ontology Language (OWL) format. A process manager spawns the main components of the system, and re-
spawns processes if their supporting computing infrastructure fails. The user interacts with the agent via a 
dialog manager, which has access to all of the running processes. 
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distances involved, this close collaboration will not 
be practical for inter-planetary exploration. In this 
work, we are developing a software cognitive 
architecture for space exploration (CASE) that will 
autonomously carry out exploration operations by 
using the same knowledge and executing the same 
plans and procedures as those developed on Earth.  

The arrangement of software components and their 
internal interfaces is called an architecture, and if 
those components individually or together are 
capable of cognition – awareness through 
perception, and capable of acquiring knowledge, 
solving problems and communicating via language 
– it is called a cognitive architecture.  Over the past 
several years, TRACLabs, in support of NASA and   
other government agencies, has developed a number 
of software components that can be used in such an 
architecture, and is now designing an exploration 
agent based on that architecture and showing that it 
is feasible for use in space exploration. These 
components include a procedure development and 
execution system known as PRIDE [1] that allows 
for variably autonomous execution of both crew and 
robotic procedures, an automated planner [2] that 
plans and re-plans the execution of procedures to 
achieve overall mission goals and an ontology data 
management system [3] that makes consistent 
system states available to all the components. Since 

there will be rovers and other robots in a planetary 
base, the architecture also supports supervised 
robotic activities as well. 

Also, we contend that any useful cognitive 
architecture must include components to support 
human monitoring and human-machine interaction, 
particularly for robot systems on a planetary surface. 
So, our proposed architecture includes not only 
monitoring and control components, but also a 
natural language (NL) dialog system, and a variable 
autonomy procedure execution system. Finally, to 
be robust, the architecture should be modular, and 
be capable of supporting multiple processes 
executing on multiple processors, and it should be 
robust to processor failure. 

So, besides integrating the existing components into 
a coherent reasoning architecture, we have added an 
NL dialog system and a process manager to track 
running processes and restore them when they fail 
(see Figure 1).  The remainder of this paper 
describes our simulation environment, the 
components of the architecture in more detail, a 
demonstration of the working system, and discusses 
desired future work to improve CASE. 

 
Figure 2 The planetary base. The solar panels are in the background, the batteries are in the right mid-
ground, and the habitat is in the right foreground. One two-armed robot stands at the switching panel; a 
second stands near one of two black DC to DC Converter Units (DDCUs). 

 
 



2 A SIMULATION FOR CASE 
DEVELOPMENT 

We have selected a planetary base scenario as 
depicted in Figure 2. The power system consists of 
batteries, solar panels, DC to DC Converter Units 
(DDCUs), that provide direct power from the 
batteries to the habitat, and a control panel with 
switches for connecting solar panels to batteries, 
batteries to DDCUs and DDCUs to the habitat. 
There is a crew of six, each of whom is qualified 
to fulfill roles for activities, such as power and 
thermal control, life support, robotics and extra-
vehicular activity (EVA). Life support systems 
modeled in the habitat included the internal active 
thermal control system (IATCS), the carbon 
dioxide removal system (CDRS), and the oxygen 
generation system (OGS).  

To simulate our planetary base, we are using a 
test bed developed for a National Space 
Biomedical Research Institute (NSBRI) 
Supervisory Control Study [4], which includes a 

habitat with systems powered from batteries 
charged from solar panels, a humanoid robot that 
connects batteries to solar panels or to power 
distribution grids for the habitat and a life support 
simulation called BIOSIM [5]. The activities we 
have modeled for planning and execution include 
connecting various electrical power systems, 
activating and de-activating the IATCS, CDRS 
and OGS, preparing and donning spacesuits, 
charging the rovers and driving or supervising 
their traverses. The above activities can be 
planned by our automated planner, AP [2], and 

the low level tasks, such as connecting a solar 
panel to a battery or activating the IATCS are 
executed by procedures developed via the PRIDE 
system. Also, while the making of electrical 
connections are overseen by a crewmember, they 
are carried out by a two-armed robot, and if the 
robot has some trouble grasping and turning a 
switch on the control panel, the crewmember can 
adjust its grasp via what we call an affordance 
template (AT) [6] (see Section 7 below). 

3 PLANNING AND EXECUTION 
The backbone of CASE is the planning and 
execution system shown in Figure 1. This system 
is an instance of layered software control [7]. Our 
automated planning system generates plans whose 
primitive actions (executables) are procedures 
developed in our PRIDE system. A PRIDE 
executive called the procedure agent for execution, 
or PAX, runs the procedures, which are 
represented in the procedure representation 
language (PRL) [8].  The procedures can be fully 

automated or a mixture of automated and manual 
instructions, executed by both a crewmember and 
the system. PAX interfaces with the hardware via 
flight software, be it vehicle, process control or 
robotic.  As the control software executes, PAX 
updates the system states in the ontology and 
informs the planner of the success or failure of the 
plan step.  After each update the planner may re-
plan to accommodate failures or unexpected 
successes. 

 
Figure 3 A procedure to allow a user to adjust the affordance template (AT) for a knob on the 
control panel. The procedure has paused on a manual step to allow the user to adjust the template. 

 



4 ONTOLOGY SERVER 
To review, an ontology is a rigorous, exhaustive 
organization of the knowledge of a domain, 
containing all relevant entities and their relations. 
We used the Web Ontology Language (OWL) [9] 
to construct models of the International Space 
Station (ISS) to be used during the generation of 
activity plans. Our OWL models consist of classes, 
instances and relations among them, such as (is-
attached-to DDCU3 Coldplate1); axioms, for 

example, if a container is moved then all of its 
contents move as well; and of course, the 
information – data and object properties – 
associated with each entity. The users can modify 
the ontology via the PRIDE Ontology Editor 
(PRONTOE) [10]. In this project, the ontology 
serves as the long-term memory of CASE. It 
consists of the ISS ontology, extended to include 
the systems and subsystems for a planetary base 
and its associated equipment such as rovers. 

5 DIALOG MANAGER 
The previously developed components have 
interfaces, such as the interactive GUI for the 
planner, a procedure execution viewer, and the 
rendering of the planetary base (see Figure 2). But 
we also developed a dialog manager, which allows 
the crew to interact with the agent using natural 
language.  

The dialog manager has three functions: to fulfill 

user information requests, to serve as a command 
interface to the CASE agent procedures, and to 
post new goals or delete obsolete goals from the 
activity plan. Our dialog system is based on the 
Dynamic Predictive Memory Architecture (DPMA) 
[14], which arose from three basic ideas. The first 
is the use of direct memory access parsing (DMAP) 
[15] to process a sentence in natural language; the 
second is that natural language processing is less 
complex when the corpus of semantic concepts 

can be circumscribed by a particular domain using 
an ontology; and the third is the view that dialog is 
a planful activity [16]. Rather than syntactic and 
semantic parsing of natural language, DPMA 
processes the utterance text by matching phrasal 
patterns attached to nodes in a concept memory, 
and we generate CASE’s concept graph directly 
from the domain ontology. So, the sentence, 
“Where is Rover-1?” is matched to a Request For 
Location Information concept, which has 
placeholders for a conceptual object, which in this 
case is the mobile robot, Rover-1. 

When the cognitive architecture and the user share 
a common set of beliefs about the applications 
domain and how to get things done, it is relatively 
easy to determine what words in the utterance are 
ambiguous. For example, in the query, “Where is 
the rover?” the conceptual object is a class of 
vehicle but is not specific enough to execute the 
query. Given that the dialog has the overarching 

 
Figure 4 The CASE processes and their distribution across a MacBook Pro and a high-speed Linux 
workstation. The yellow polygons represent executive bridges that translate the planning actions into 
procedure invocations. The resource manager is an external process discussed in the conclusions. 
Our communications configuration includes CORBA [11], RESTful [12] and a robot operating 
system (ROS)[13] bridge between PAX and the robot simulations. 



purpose to satisfy the user’s informational goals, 
our query processing system is a turn-based 
planning function, wherein the dialog continues 
until the user’s needs are satisfied. For example, 
the system might respond, “I understand you are 
requesting location information about a rover. 
There are two rovers serving our base. To which 
are you referring?” and present a list of active 
rovers from which to choose.  

6 PROCESS MANAGER 
It seems reasonable to assume that the computing 
resources used to host CASE could become 
compromised, and thus, require some mechanism 
to reconstitute those processes and continue 
operations. Our basic approach is to have a 
process manager (PM), along with a redundant 
copy, running on each machine that can host 
processes. A parent process orchestrates the 
starting, stopping and restarting of processes on its 
machine, or, via RESTful commands, uses sibling 

processes on other machines. Process managers 
monitor their processes and, should one fail, 
reconstitutes that process as well as all processes 
that depend upon it. 

The key to having our process manager be more 

than a simple built-in recovery mechanism, such 
as Linux’s systemd, is to maintain knowledge of 
the dependencies each process has with the others. 
For example, if in running CASE we lose 
PRIDEView, we need to reconstitute PAX as well 
as the PAX processes for each executing agent. So, 
the process manager(s) maintain a table of 
dependencies, to insure all dependent processes 
are stopped/restarted in their order of mutual 
support. 

7 ALLOWING THE USER DIRECT 
CONTROL 

As with all autonomous systems, the human user 
wants to have access to any part of the system, if 
for nothing else than to see details of the operation. 
In CASE, procedures can be authored to allow 
low-level access to the robots in the simulation 
(they can also be written to access any low-level 
command or telemetry for the life support system). 
In Figure 3, we see a procedure that has a manual 

instruction to adjust the affordance template (AT) 
of the robot for a particular knob on the control 
panel.  The user has made visible the AT involved 
in the task and can adjust any of the six degrees of 
freedom for the grasp. When the user has 

 
Figure 5 A view of our interactive planning interface and the demonstration plan. 

 
 



completed the adjustment, she marks the manual 
instruction as complete, and the automation saves 
the new AT and continues the procedure until the 
grasp is complete.  

8 A CASE DEMONSTRATION 
We have developed a CASE demonstration 
capability that uses a MacBook Pro as the primary 
computer and a high-end Linux computer as the 
secondary computer. The planning and execution 
processes, ontology server and dialog manager run 
on the Mac, while the PRIDE processes and the 
simulations run on the Linux machine (Figure 4). 
This configuration is preferred, since we want the 
PRIDE software running on the same machine as 
the simulations if at all possible, while the higher 
levels of the architecture run on the primary 
computer. 

8.1 The Main Demonstration 

At the planner GUI (Figure 5) the user selects the 
tasks to be done and assigns agents (selected 
actions pane in Figure 5). She then clicks on the 
execute icon (the computer icon in the selected 
actions pane) to generate the demonstration plan 
shown as a hierarchical task net (top right of 
Figure 5), an indented plan navigator display (top 
left of Figure 5) and as an activity timeline 
(bottom left of Figure 5). In the resulting plan, the 
first task will provide power to a habitat DDCU. 
The next three tasks power and then guide a rover 
to two locations. The next three tasks close 
switches so that power will flow to the IATCS and 
then activate the IATCS. The last three tasks carry 
out a similar function to provide power for and to 
activate the CDRS.  

In the timeline of Figure 5, Nancy (red activities) 
must power the DDCU and then execute the other 
three tasks concerning getting the IATCS started. 
In parallel, Sally (blue activities) charges the rover 
and supervises its travel. Also, in parallel, but after 
the DDCU is connected to the habitat, Mike (green 
activities) is assigned to power the CDRS, but 
only James (yellow activity) is qualified to 
activate the CDRS. 

The user then selects the plan in the navigation 
display and clicks on the execute icon (half circle 
arrow in the plan navigator pane in Figure 5). 
From that point on, though the user must take 
some manual actions in the procedures, the system 
runs autonomously to completion. As each task 
becomes ready to execute, the planner sends the 
task to the assigned agent’s executive bridge (see 
Figure 4), which starts up the appropriate 
procedure in PRIDE. When PAX indicates the 
procedure is complete, the bridge notifies the 
planner, which then updates the plan, advances the 
time line and sends the next set of ready tasks. 

8.2 Process Management 
We can currently demonstrate many combinations 
of recoveries from failed processes, but the main 
ones we considered concerned loss of some 
process in each of the communications protocols 
(see Figure 4), as well as loss of the PMs 
themselves. So, the following can be demonstrated: 

a) Loss of a redundant PM:  Artificially kill 
the redundant primary or sibling PM; the 
primary or sibling PM restarts the 
redundant PM. 

b) Loss of a primary PM: On either machine, 
artificially kill the primary or sibling PM; 
the redundant primary or sibling PM 
restarts the redundant PM. 

c) Loss of the ontology server: Artificially 
kill the ontology server; the PMs first 
shutdown the planning GUI, the exec-
bridges and AP, and then restart the 
ontology server and then AP, the exec-
bridges and the planning GUI. 

d) Loss of PRIDEView: Artificially kill the 
PRIDEView process; the PMs first 
shutdown PAX and the exec bridges, then 
restart PRIDEView, PAX and the exec 
bridges. 

e) Loss of the CORBA Name Service (used 
by the planner and its GUI): Artificially 
kill the CORBA Name Service; the PMs 
first shutdown the planner GUI, exec 
bridges, AP, and the CORBA General 
Factory, then restart the name service, and 
then the CORBA Factory, AP, exec 
bridges and the planner GUI. 

As a variation, we can cause the redundant PM on 
the primary machine to temporarily halt its 
monitor loop then shutdown the primary PM and 
then the ontology server. When we restart the 
monitor loop in the redundant PM, the redundant 
PM immediately restarts the parent PM, which 
then carries out the actions in c) above. 

9 CONCLUSIONS AND FUTURE 
WORK 

We believe CASE will provide a feasible approach 
to agent design for space exploration, provide on-
board autonomy in nominal operations and 
human-computer solutions for off-nominal 
operations and be robust in the face of 
computational failures. 

Our future work with CASE involves more 
extensive process management, consolidating the 
disparate user interfaces and developing a 
canonical interface for external modules. 



6.1 Improved Process Management 
Section 8.2 described the types of failure scenarios 
we have investigated. While CASE will 
reconstitute all the appropriate processes, only 
PRIDE has a record of what had occurred prior to 
the failure. As a result, the demonstration can 
restart “from the top” and so is still functional. 
However, in an actual planetary situation, trying to 
activate the life support systems when they’re 
already started will cause the activation 
procedures to fail, which of course will cause the 
planner to fail the plan, without recourse. 

The main problem is that there is no check-
pointing going on.  The planner is fully capable of 
re-planning from where it left off, if only it could 
save the situation at that point in time. The 
ontology server is updated whenever a state 
changes in the world, but it needs to write out 
those states periodically and reload them when it 
recovers from failure. Developing check pointing 
throughout the system will be a future endeavor. 

Finally, we want to include hardware requirements, 
e.g., memory, processor speed and bandwidth, for 
each process, so that the PMs can reconstitute 
processes on secondary machines if the original 
machines loose power. 

6.2 A Canonical Interface for External 
Modules 

An “external” module is one that is not part of 
CASE proper, such as applications developed by 
NASA international partners. An example is the 
resource manager (RM) in Figure 4. The RM 
monitors procedures and provides warnings when 
resources are nearly depleted. In order to 
accommodate external processes, we are 
developing a canonical interface based on the 
Agent Communications Language (ACL) 
(http://www.fipa.org/repository/aclspecs.html) and 
the semantics developed for the Knowledge Query 
and Manipulation Language [17]. These can be 
distilled into ontological references and 
“performatives” given in semi-natural language 
speech acts.  The point of these performatives is to 
abstract the details of the actual RESTful queries 
and posts so that the authors of the external 
processes need not deal with them. 

Since all processes in CASE use the same 
ontology, we need not include an ontology 
reference in our performatives, which will include 
a verb, a subject, an object and an information-
object. For example, a query for a list of 
procedures would contain the verb “ask”, the 
subject “PRIDE” and the information, “available 
procedures”. A query for the attributes of an object 
in the ontology would be the verb “ask”, the 
subject “ontology” and the object, e.g., “rover1”. 
When the RM wants to post information to a 
process, say, PAX, the verb would be “send 

comment”, the subject, “PAX”, and the 
information-object, “running procedure 31 is using 
camera3”. 

6.3 The FACE of CASE 

Past and current work in NASA space analogs, 
such as NEEMO 
(https://www.nasa.gov/mission_pages/NEEMO/in
dex.html) and HERA 
(https://www.nasa.gov/analogs/hera) has shown 
that the usefulness of a cognitive architecture, or 
indeed, of any automation supporting human 
activity, is only as good as its user interfaces and 
how well they support effective human-
automation interaction and collaboration. The 
agent should include user-centered design [18] of 
its displays and interaction modes to help users 
maintain situation awareness [19], and should 
recommend courses of action without undue 
cognitive load or distraction, particularly for the 
intra-vehicular activity user, or IVA. The users 
should be able to easily and quickly be brought up 
to speed about anomalous situations so that they 
can deal with the problem while maintaining the 
status quo of nominal operations. We are in the 
process of designing a canonical interaction 
protocol for CASE, thus providing an exemplar 
for a flexible agent-based communication for 
exploration (FACE). 
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