
ABSTRACT
Because close collaboration between the crew and
mission control will not be practical for inter-
planetary exploration, NASA envisions the need for
an intelligent autonomous agent that can continually
integrate data from the spacecraft or lunar/planetary
base to advise the crew during their mission. Over
the past several years, TRACLabs, in support of
NASA and other government agencies, has
developed a number of software components that
can be used in such an agent, and has developed an

architecture called a cognitive architecture for space
exploration (CASE). This paper describes that
architecture and discusses its feasibility for use in
space exploration.

1 INTRODUCTION
In space operations, carrying out the activities of
mission plans by executing procedures often
requires close collaboration between ground
controllers who have deep knowledge of the
spacecraft’s systems and crewmembers who have
in-situ situation awareness. Because of the light

Figure 1 The top-level CASE architectural design. The planner generates an activity plan whose primitives
are procedures run by the execution system, which in turn interfaces to the hardware via control software.
The planning and execution systems draw information from and update the system ontology, stored in the Web
Ontology Language (OWL) format. A process manager spawns the main components of the system, and re-
spawns processes if their supporting computing infrastructure fails. The user interacts with the agent via a
dialog manager, which has access to all of the running processes.

CASE: A COGNITIVE ARCHITECTURE FOR SPACE
EXPLORATION

*Pete Bonasso1, Stephen Hart 2, Ana Huaman3, James Kramer4

1TRACLabs, Inc, 16969 N. Texas Ave, Suite 300, Webster, TX 77059, USA, E-mail: bonasso@traclabs.com
2 TRACLabs, Inc, 16969 N. Texas Ave, Suite 300, Webster, TX 77059, USA, E-mail: swhart@traclabs.com

3TRACLabs, Inc, 16969 N. Texas Ave, Suite 300, Webster, TX 77059, USA, E-mail: ana@traclabs.com
 4 TRACLabs, Inc, 16969 N. Texas Ave, Suite 300, Webster, TX 77059, USA, E-mail: jkramer3@traclabs.com

distances involved, this close collaboration will not
be practical for inter-planetary exploration. In this
work, we are developing a software cognitive
architecture for space exploration (CASE) that will
autonomously carry out exploration operations by
using the same knowledge and executing the same
plans and procedures as those developed on Earth.

The arrangement of software components and their
internal interfaces is called an architecture, and if
those components individually or together are
capable of cognition – awareness through
perception, and capable of acquiring knowledge,
solving problems and communicating via language
– it is called a cognitive architecture. Over the past
several years, TRACLabs, in support of NASA and
other government agencies, has developed a number
of software components that can be used in such an
architecture, and is now designing an exploration
agent based on that architecture and showing that it
is feasible for use in space exploration. These
components include a procedure development and
execution system known as PRIDE [1] that allows
for variably autonomous execution of both crew and
robotic procedures, an automated planner [2] that
plans and re-plans the execution of procedures to
achieve overall mission goals and an ontology data
management system [3] that makes consistent
system states available to all the components. Since

there will be rovers and other robots in a planetary
base, the architecture also supports supervised
robotic activities as well.

Also, we contend that any useful cognitive
architecture must include components to support
human monitoring and human-machine interaction,
particularly for robot systems on a planetary surface.
So, our proposed architecture includes not only
monitoring and control components, but also a
natural language (NL) dialog system, and a variable
autonomy procedure execution system. Finally, to
be robust, the architecture should be modular, and
be capable of supporting multiple processes
executing on multiple processors, and it should be
robust to processor failure.

So, besides integrating the existing components into
a coherent reasoning architecture, we have added an
NL dialog system and a process manager to track
running processes and restore them when they fail
(see Figure 1). The remainder of this paper
describes our simulation environment, the
components of the architecture in more detail, a
demonstration of the working system, and discusses
desired future work to improve CASE.

Figure 2 The planetary base. The solar panels are in the background, the batteries are in the right mid-
ground, and the habitat is in the right foreground. One two-armed robot stands at the switching panel; a
second stands near one of two black DC to DC Converter Units (DDCUs).

2 A SIMULATION FOR CASE
DEVELOPMENT

We have selected a planetary base scenario as
depicted in Figure 2. The power system consists of
batteries, solar panels, DC to DC Converter Units
(DDCUs), that provide direct power from the
batteries to the habitat, and a control panel with
switches for connecting solar panels to batteries,
batteries to DDCUs and DDCUs to the habitat.
There is a crew of six, each of whom is qualified
to fulfill roles for activities, such as power and
thermal control, life support, robotics and extra-
vehicular activity (EVA). Life support systems
modeled in the habitat included the internal active
thermal control system (IATCS), the carbon
dioxide removal system (CDRS), and the oxygen
generation system (OGS).

To simulate our planetary base, we are using a
test bed developed for a National Space
Biomedical Research Institute (NSBRI)
Supervisory Control Study [4], which includes a

habitat with systems powered from batteries
charged from solar panels, a humanoid robot that
connects batteries to solar panels or to power
distribution grids for the habitat and a life support
simulation called BIOSIM [5]. The activities we
have modeled for planning and execution include
connecting various electrical power systems,
activating and de-activating the IATCS, CDRS
and OGS, preparing and donning spacesuits,
charging the rovers and driving or supervising
their traverses. The above activities can be
planned by our automated planner, AP [2], and

the low level tasks, such as connecting a solar
panel to a battery or activating the IATCS are
executed by procedures developed via the PRIDE
system. Also, while the making of electrical
connections are overseen by a crewmember, they
are carried out by a two-armed robot, and if the
robot has some trouble grasping and turning a
switch on the control panel, the crewmember can
adjust its grasp via what we call an affordance
template (AT) [6] (see Section 7 below).

3 PLANNING AND EXECUTION
The backbone of CASE is the planning and
execution system shown in Figure 1. This system
is an instance of layered software control [7]. Our
automated planning system generates plans whose
primitive actions (executables) are procedures
developed in our PRIDE system. A PRIDE
executive called the procedure agent for execution,
or PAX, runs the procedures, which are
represented in the procedure representation
language (PRL) [8]. The procedures can be fully

automated or a mixture of automated and manual
instructions, executed by both a crewmember and
the system. PAX interfaces with the hardware via
flight software, be it vehicle, process control or
robotic. As the control software executes, PAX
updates the system states in the ontology and
informs the planner of the success or failure of the
plan step. After each update the planner may re-
plan to accommodate failures or unexpected
successes.

Figure 3 A procedure to allow a user to adjust the affordance template (AT) for a knob on the
control panel. The procedure has paused on a manual step to allow the user to adjust the template.

4 ONTOLOGY SERVER
To review, an ontology is a rigorous, exhaustive
organization of the knowledge of a domain,
containing all relevant entities and their relations.
We used the Web Ontology Language (OWL) [9]
to construct models of the International Space
Station (ISS) to be used during the generation of
activity plans. Our OWL models consist of classes,
instances and relations among them, such as (is-
attached-to DDCU3 Coldplate1); axioms, for

example, if a container is moved then all of its
contents move as well; and of course, the
information – data and object properties –
associated with each entity. The users can modify
the ontology via the PRIDE Ontology Editor
(PRONTOE) [10]. In this project, the ontology
serves as the long-term memory of CASE. It
consists of the ISS ontology, extended to include
the systems and subsystems for a planetary base
and its associated equipment such as rovers.

5 DIALOG MANAGER
The previously developed components have
interfaces, such as the interactive GUI for the
planner, a procedure execution viewer, and the
rendering of the planetary base (see Figure 2). But
we also developed a dialog manager, which allows
the crew to interact with the agent using natural
language.

The dialog manager has three functions: to fulfill

user information requests, to serve as a command
interface to the CASE agent procedures, and to
post new goals or delete obsolete goals from the
activity plan. Our dialog system is based on the
Dynamic Predictive Memory Architecture (DPMA)
[14], which arose from three basic ideas. The first
is the use of direct memory access parsing (DMAP)
[15] to process a sentence in natural language; the
second is that natural language processing is less
complex when the corpus of semantic concepts

can be circumscribed by a particular domain using
an ontology; and the third is the view that dialog is
a planful activity [16]. Rather than syntactic and
semantic parsing of natural language, DPMA
processes the utterance text by matching phrasal
patterns attached to nodes in a concept memory,
and we generate CASE’s concept graph directly
from the domain ontology. So, the sentence,
“Where is Rover-1?” is matched to a Request For
Location Information concept, which has
placeholders for a conceptual object, which in this
case is the mobile robot, Rover-1.

When the cognitive architecture and the user share
a common set of beliefs about the applications
domain and how to get things done, it is relatively
easy to determine what words in the utterance are
ambiguous. For example, in the query, “Where is
the rover?” the conceptual object is a class of
vehicle but is not specific enough to execute the
query. Given that the dialog has the overarching

Figure 4 The CASE processes and their distribution across a MacBook Pro and a high-speed Linux
workstation. The yellow polygons represent executive bridges that translate the planning actions into
procedure invocations. The resource manager is an external process discussed in the conclusions.
Our communications configuration includes CORBA [11], RESTful [12] and a robot operating
system (ROS)[13] bridge between PAX and the robot simulations.

purpose to satisfy the user’s informational goals,
our query processing system is a turn-based
planning function, wherein the dialog continues
until the user’s needs are satisfied. For example,
the system might respond, “I understand you are
requesting location information about a rover.
There are two rovers serving our base. To which
are you referring?” and present a list of active
rovers from which to choose.

6 PROCESS MANAGER
It seems reasonable to assume that the computing
resources used to host CASE could become
compromised, and thus, require some mechanism
to reconstitute those processes and continue
operations. Our basic approach is to have a
process manager (PM), along with a redundant
copy, running on each machine that can host
processes. A parent process orchestrates the
starting, stopping and restarting of processes on its
machine, or, via RESTful commands, uses sibling

processes on other machines. Process managers
monitor their processes and, should one fail,
reconstitutes that process as well as all processes
that depend upon it.

The key to having our process manager be more

than a simple built-in recovery mechanism, such
as Linux’s systemd, is to maintain knowledge of
the dependencies each process has with the others.
For example, if in running CASE we lose
PRIDEView, we need to reconstitute PAX as well
as the PAX processes for each executing agent. So,
the process manager(s) maintain a table of
dependencies, to insure all dependent processes
are stopped/restarted in their order of mutual
support.

7 ALLOWING THE USER DIRECT
CONTROL

As with all autonomous systems, the human user
wants to have access to any part of the system, if
for nothing else than to see details of the operation.
In CASE, procedures can be authored to allow
low-level access to the robots in the simulation
(they can also be written to access any low-level
command or telemetry for the life support system).
In Figure 3, we see a procedure that has a manual

instruction to adjust the affordance template (AT)
of the robot for a particular knob on the control
panel. The user has made visible the AT involved
in the task and can adjust any of the six degrees of
freedom for the grasp. When the user has

Figure 5 A view of our interactive planning interface and the demonstration plan.

completed the adjustment, she marks the manual
instruction as complete, and the automation saves
the new AT and continues the procedure until the
grasp is complete.

8 A CASE DEMONSTRATION
We have developed a CASE demonstration
capability that uses a MacBook Pro as the primary
computer and a high-end Linux computer as the
secondary computer. The planning and execution
processes, ontology server and dialog manager run
on the Mac, while the PRIDE processes and the
simulations run on the Linux machine (Figure 4).
This configuration is preferred, since we want the
PRIDE software running on the same machine as
the simulations if at all possible, while the higher
levels of the architecture run on the primary
computer.

8.1 The Main Demonstration

At the planner GUI (Figure 5) the user selects the
tasks to be done and assigns agents (selected
actions pane in Figure 5). She then clicks on the
execute icon (the computer icon in the selected
actions pane) to generate the demonstration plan
shown as a hierarchical task net (top right of
Figure 5), an indented plan navigator display (top
left of Figure 5) and as an activity timeline
(bottom left of Figure 5). In the resulting plan, the
first task will provide power to a habitat DDCU.
The next three tasks power and then guide a rover
to two locations. The next three tasks close
switches so that power will flow to the IATCS and
then activate the IATCS. The last three tasks carry
out a similar function to provide power for and to
activate the CDRS.

In the timeline of Figure 5, Nancy (red activities)
must power the DDCU and then execute the other
three tasks concerning getting the IATCS started.
In parallel, Sally (blue activities) charges the rover
and supervises its travel. Also, in parallel, but after
the DDCU is connected to the habitat, Mike (green
activities) is assigned to power the CDRS, but
only James (yellow activity) is qualified to
activate the CDRS.

The user then selects the plan in the navigation
display and clicks on the execute icon (half circle
arrow in the plan navigator pane in Figure 5).
From that point on, though the user must take
some manual actions in the procedures, the system
runs autonomously to completion. As each task
becomes ready to execute, the planner sends the
task to the assigned agent’s executive bridge (see
Figure 4), which starts up the appropriate
procedure in PRIDE. When PAX indicates the
procedure is complete, the bridge notifies the
planner, which then updates the plan, advances the
time line and sends the next set of ready tasks.

8.2 Process Management
We can currently demonstrate many combinations
of recoveries from failed processes, but the main
ones we considered concerned loss of some
process in each of the communications protocols
(see Figure 4), as well as loss of the PMs
themselves. So, the following can be demonstrated:

a) Loss of a redundant PM: Artificially kill
the redundant primary or sibling PM; the
primary or sibling PM restarts the
redundant PM.

b) Loss of a primary PM: On either machine,
artificially kill the primary or sibling PM;
the redundant primary or sibling PM
restarts the redundant PM.

c) Loss of the ontology server: Artificially
kill the ontology server; the PMs first
shutdown the planning GUI, the exec-
bridges and AP, and then restart the
ontology server and then AP, the exec-
bridges and the planning GUI.

d) Loss of PRIDEView: Artificially kill the
PRIDEView process; the PMs first
shutdown PAX and the exec bridges, then
restart PRIDEView, PAX and the exec
bridges.

e) Loss of the CORBA Name Service (used
by the planner and its GUI): Artificially
kill the CORBA Name Service; the PMs
first shutdown the planner GUI, exec
bridges, AP, and the CORBA General
Factory, then restart the name service, and
then the CORBA Factory, AP, exec
bridges and the planner GUI.

As a variation, we can cause the redundant PM on
the primary machine to temporarily halt its
monitor loop then shutdown the primary PM and
then the ontology server. When we restart the
monitor loop in the redundant PM, the redundant
PM immediately restarts the parent PM, which
then carries out the actions in c) above.

9 CONCLUSIONS AND FUTURE
WORK

We believe CASE will provide a feasible approach
to agent design for space exploration, provide on-
board autonomy in nominal operations and
human-computer solutions for off-nominal
operations and be robust in the face of
computational failures.

Our future work with CASE involves more
extensive process management, consolidating the
disparate user interfaces and developing a
canonical interface for external modules.

6.1 Improved Process Management
Section 8.2 described the types of failure scenarios
we have investigated. While CASE will
reconstitute all the appropriate processes, only
PRIDE has a record of what had occurred prior to
the failure. As a result, the demonstration can
restart “from the top” and so is still functional.
However, in an actual planetary situation, trying to
activate the life support systems when they’re
already started will cause the activation
procedures to fail, which of course will cause the
planner to fail the plan, without recourse.

The main problem is that there is no check-
pointing going on. The planner is fully capable of
re-planning from where it left off, if only it could
save the situation at that point in time. The
ontology server is updated whenever a state
changes in the world, but it needs to write out
those states periodically and reload them when it
recovers from failure. Developing check pointing
throughout the system will be a future endeavor.

Finally, we want to include hardware requirements,
e.g., memory, processor speed and bandwidth, for
each process, so that the PMs can reconstitute
processes on secondary machines if the original
machines loose power.

6.2 A Canonical Interface for External
Modules

An “external” module is one that is not part of
CASE proper, such as applications developed by
NASA international partners. An example is the
resource manager (RM) in Figure 4. The RM
monitors procedures and provides warnings when
resources are nearly depleted. In order to
accommodate external processes, we are
developing a canonical interface based on the
Agent Communications Language (ACL)
(http://www.fipa.org/repository/aclspecs.html) and
the semantics developed for the Knowledge Query
and Manipulation Language [17]. These can be
distilled into ontological references and
“performatives” given in semi-natural language
speech acts. The point of these performatives is to
abstract the details of the actual RESTful queries
and posts so that the authors of the external
processes need not deal with them.

Since all processes in CASE use the same
ontology, we need not include an ontology
reference in our performatives, which will include
a verb, a subject, an object and an information-
object. For example, a query for a list of
procedures would contain the verb “ask”, the
subject “PRIDE” and the information, “available
procedures”. A query for the attributes of an object
in the ontology would be the verb “ask”, the
subject “ontology” and the object, e.g., “rover1”.
When the RM wants to post information to a
process, say, PAX, the verb would be “send

comment”, the subject, “PAX”, and the
information-object, “running procedure 31 is using
camera3”.

6.3 The FACE of CASE

Past and current work in NASA space analogs,
such as NEEMO
(https://www.nasa.gov/mission_pages/NEEMO/in
dex.html) and HERA
(https://www.nasa.gov/analogs/hera) has shown
that the usefulness of a cognitive architecture, or
indeed, of any automation supporting human
activity, is only as good as its user interfaces and
how well they support effective human-
automation interaction and collaboration. The
agent should include user-centered design [18] of
its displays and interaction modes to help users
maintain situation awareness [19], and should
recommend courses of action without undue
cognitive load or distraction, particularly for the
intra-vehicular activity user, or IVA. The users
should be able to easily and quickly be brought up
to speed about anomalous situations so that they
can deal with the problem while maintaining the
status quo of nominal operations. We are in the
process of designing a canonical interaction
protocol for CASE, thus providing an exemplar
for a flexible agent-based communication for
exploration (FACE).

Acknowledgement
This work was funded under NASA contract
NNX17CA59P.

References
[1] Izygon, M., D. Kortenkamp, and A. Molin, A
procedure integrated development environment for
future spacecraft and habitats., in Space Technology
and Applications International Forum (STAIF). 2008,
American Instutute of Physics: Albuquerque, NM.
[2] Elsaesser, C. and J. Sanborn, An Architecture for
Adversarial Planning. IEEE Transactions on Systems,
Man, and Cybernetics, 1990. 20(1): p. 186-194.
[3] Bell, S., et al., PRONTOE: A case study for
developing ontologies for operations, in 5th
International Conference on Knowledge Engineering
and Ontology Development (KEOD 13). 2013:
Algarve, Portugal.
[4] Schreckenghost, D., D. Billman, and T. Milam,
Effectiveness of strategies for partial automation of
electronic procedures during nasa hera analog
missions, in International Joint Conferences on
Artificial Intelligence (IJCAI) Workshop on AI and
Space (IWPSS). 2015: Buenos Aires, Argentina.
 [5] Kortenkamp, D. and S. Bell, BioSim: An
Integrated Simulation of an Advanced Life Support
System for Intelligent Control Research, in The 7th
International Symposium on Artificial Intelligence,
Robotics and Automation in Space (i-SAIRAS-03).
2003: Nara, Japan.
 [6] Beeson, P., S. Hart, and S. Gee, Cartesian motion

planning & task programming with CRAFTSMAN., in
RSS 2016 Workshop on Task and Motion Planning.
2016: Ann Arbor, Michigan.
 [7] Gat, E., Three-Layer Architectures, in Mobile
Robots and Artificial Intelligence, D. Kortenkamp,
R.P. Bonasso, and R. Murphy, Editors. 1998, AAAI
Press: Menlo Park, CA. p. 195-210.
[8] Kortenkamp, D., R.P. Bonasso, and D.
Schreckenghost, A Procedure Representation
Language for Human Spaceflight Operations, in The
9th International Symposium on Artificial Intelligence,
Robotics and Automation in Space (i-SAIRAS-08).
2008: Los Angeles, CA.
[9] OWG. the Web Ontology Language (OWL). 2004;
Available from: http://www.w3.org/TR/owl-features/.
[10] Bell, S., et al., PRONTOE: An Ontology Editor
for Domain Experts. Communications in Computer
and Information Science, 2015. 454: p. 153-167.
[11] OMG. CORBA Basics. 2002; Available from:
http://www.omg.org/gettingstarted/corbafaq.htm.
[12] Fielding, R.T., Architectural Styles and the
Design of Network-based Software Architectures
(chapter 5: Representational State Transfers), in
Computer Science. 2000, UC Ervine: irvine, CA.
 [13] Quigley, K., et al., Ros: an open-source robot
operating system, in ICRA Workshop on Open Source
Software. 2009: Kobe, Japan.
 [14] Fitzgerald, W. and J.R. Firby. The Dynamic
Predictive Memory Architecture: Integrating
Language with Task Execution. in Proceedings of
IEEE Symposia on Intelligence and Systems. 1998.
Washington, DC.
[15] Martin, C.E., Direct Memory Access Parsing.
Ph.D. Dissertation 1990, Yale University.
 [16] Grosz, B.J. and C.L. Sidner, Plans for Discourse,
in Intentions in Communication, P.R. Cohen, J.
Morgan, and M.E. Pollack, Editors. 1990, MIT Press:
Cambridge, MA. p. 417-444.
[17] Finin, T., Y. Labrou, and J. Mayfield, KQML as
an Agent Communication Language, in Software
Agents, J.M. Bradshaw, Editor. 1997, AAAI Press /
The MIT Press: Cambridge, MA. p. 291-316.
[18] Norman, D., The Design of Everyday Things:
Revised and expanded edition, ed. B.B. (AZ). 2013.
[19] Endsley, M.R., Automation and situation
awareness. Automation and human performance:
Theory and applications, 1996. 20: p. 163-181.

