
ABSTRACT 

The European Robotic Goal-Oriented Autonomous 

Controller ERGO [1] is one of the six space robotic 

projects in the frame of the PERASPERA SRC [2]. Its 

main objective is to provide an autonomous 

framework for future space robots that will be able to 

perform its activities without the need of constant 

human supervision and control. Future space 

missions, in particular those aimed at Deep Space or 

planetary exploration, such as Exomars [3], or 

Mars2020 [4] demand a greater level of autonomy. 

The concept of autonomy applies here to a whole set 

of operations to be performed on-board without 

human supervision; for instance, a Martian rover has 

to avoid getting stuck in the sand while traversing, 

autonomously recharge its batteries periodically, and 

communicate with Earth occasionally each sol [5] . 

Additionally, it will need to be able to detect 

serendipitous events (e.g. a rock that has a specific 

property). A deep space probe [6] has to take the right 

measurements to approach an asteroid, and due to the 

latency of the communication with Ground, these 

measurements need to be taken autonomously on 

board. Orbital space missions have already 

successfully applied autonomy concepts on board, in 

particular for autonomous event detection and on-

board activities planning [7]. 

In ERGO we provide a framework for autonomy 

aimed to cover a wide set of a capabilities, ranging 

from reactive capabilities (i.e. capabilities that 

demand a quick response) to deliberative capabilities 

(that consider different courses of actions, and 

evaluate among the different possibilities the best 

alternative).  

This paper will discuss the process of the design of 

robotic systems using the paradigm provided by this 

framework applied to two different scenarios: a 

Sample Fetching Rover (SFR), and also an On-Orbit 

Servicing mission, where a damaged spacecraft can 

have one or several of its modules replaced 

autonomously by a servicer spacecraft. We will 

describe the methodology, the main problems found, 

the design decisions taken to overcome these 

problems, as well as an overview of the final design 

of both systems 

1 INTRODUCTION 

Control architectures form the backbone of complete 

robotic systems. Complex robotic systems require 

concurrent embedded real-time performance, and are 

typically too complex to be developed and operated 

using conventional programming techniques. The 

complex demands of such systems require 

frameworks and tools that are based on well-defined 

concepts that enable the effective realization of 

systems to meet high-level goals. 

An autonomous software framework represents a type 

of system commonly known in the literature as a 

robotic architecture, the backbone of the autonomous 

robotic software around which the rest of the 

components are defined. A typical architecture is 

divided into layers to improve the modularity and cater 

for the different latencies demanded during the 

construction of plans and execution. Literature 

distinguishes among three types of approaches: 

Deliberative architectures are a classical approach 

to building controllers, namely, a particular type of 

knowledge-based system and is defined to be one that 

contains an explicitly represented symbolic model of 

the world. The approach suggests that intelligent 

behaviour can be generated by providing a system 

with a symbolic representation of its environment and 

its desired behaviour and by syntactically 

manipulating this representation. The core of this 

deliberative architecture is a planner, which elaborates 

plans based on the knowledge of the problem domain. 

A plan defines a series of actions designed to 

accomplish a set of goals but not violate any resource 

limitation, temporal or state constraints, or other 

spacecraft or rover operation rules. But any plan, no 

matter how it is generated, requires the help of an 

execution system to be useful for real-world execution. 

Reactive architectures are based on the idea that 
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intelligent rational behaviour is innately linked to the 

environment and the idea that intelligent behaviour 

emerges from the interaction of various simpler 

behaviours. In rapidly changing environments, such as 

the real world, where the controller must react quickly 

to external changes, there may not be time available to 

perform many time-consuming actions such as 

planning and introspection. In this case an agent with 

a reactive, or behavioural, architecture may be more 

appropriate. 

Layered architectures contain a slower, 

deliberative reasoning system in charge of deciding 

the strategic plan and a fast, reactive system in charge 

of reacting to unexpected changes of the environment. 

This approach breaks down the different proactive and 

reactive elements of a controller into different layers.  

This level of abstraction allows complex controllers to 

be modelled more easily and is flexible enough for use 

in many robotic environments. The classical layered 

architecture found in many systems is a three-layered 

architecture, in which a deliberative layer receives 

high goals that are managed by an executive layer that 

in turn interfaces with the lowest, functional layer. 

In ERGO a robotic controller, based on GMV 

experiences on previous research projects for 

autonomy (like GOAC [8] and GOTCHA [9]) 

provides a paradigm for handling autonomy 

capabilities, in which different control loops are 

managed during execution by a central agent 

controller, which guarantees a harmonic execution of 

both reactive and deliberative behaviours.  This 

architecture is based on previous systems, namely 

IDEA [10], and T-REX [11]. 

The ERGO architecture for autonomy is a layered 

architecture, in which a set of reactive and deliberative 

control loops are embedded into an agent. The agent 

as a whole contains the executive and deliberative 

layers that are found in a three-layer architecture. In 

ERGO, the system is divided in two main components: 

the robotic functional layer, and the agent.  

Deliberative capabilities in ERGO are provided by the 

use of an on-board planner. One of the main 

components of ERGO is a newly developed planning 

system, Stellar, a PDDL-based planner being 

developed by Kings College London, the University 

of Basel and GMV-UK.   

Moreover, ERGO is designed having in mind a model-

driven-development (MDD) approach. It does so by 

using the TASTE technology. TASTE [12] is a Model 

Driven Engineering approach that provides a 

methodology and a set of tools to build dependable 

embedded software with real-time constraints. It has 

been developed as a follow-on of the ASSERT EC-

FP6 project, and has been promoted and founded by 

ESA. TASTE is the middleware selected for 

ESROCOS [13], which is also a robotic project of the 

PERASPERA SRC aimed to the development of a 

robotic operating system able to be used in space. By 

using TASTE in the ERGO framework we guarantee 

a strong synergy with both projects, as well as its 

future compatibility. In addition to these capabilities, 

ERGO also uses the BIP Framework [14] to integrate 

nominal and error models, and simulate the behaviour 

of the system in presence of faults. 

Figure 1: ERGO framework SW packages 

2 ERGO SW COMPONENTS 

The ERGO framework provides a set of packages and 

components that can be reused and tailored to develop 

a robotic platform that can be commanded using any 

of the 4 levels of autonomy defined in the ECSS 

Standards [15] , that is: 

 E1 Direct telecommanding processed as they are 

received from Ground. 

 E2 Time-tag commanding: commands are set 

with an associated time-tag, and executed at a 

designated time. 

 E3 Event-driven: in which a set of pre-defined 

events trigger on-board control procedures or 

direct commands. 

 E4 Goal commanding: in which the system is 

commanded via high-level goals that are 

decomposed by a planner into a sequence of lower 

level commands to be executed. An executive 

controls the execution of these low-level 

commands.   

The main packages and their components of the 

ERGO framework are shown in Figure 1. The ERGO 

Framework is composed of four main SW packages. 

The first two packages (SW1 and SW2) are aimed to 

be re-used across different robotic platforms 

meanwhile the remaining packages (SW3 and SW4) 

contain the SW for two specific implementations of 

ERGO (the so-called ERGO use cases, described in 

section 3 of this paper). In the following, we will 

describe the contents of SW1 and SW2 that provide a 

set of common components developed to be reused 

across different robotic platforms. 

2.1 SW1: ERGO Core Framework  

The first and most important package of ERGO is the 

core framework. The core framework package 

provides a set of tools to build an autonomous robotic 

system in any robotic application. It contains the 

following sub-packages: 

pkg OG2 Packages

SW1: ERGO Core Framework

+ GCI_Library

+ TASTE_Extensions

+ Agent

+ Stellar Planner

+ BIP tools

SW3: ERGO Planetary

+ FunctionalSherpa

+ Reactors_Sherpa

SW2: ERGO Specific components

+ GODA

+ Guidance

+ RARM

SW4: ERGO orbital

+ Functional Orbital

+ ReactorsOrbital

«use»

«use»

«use»
«use»



Agent: In ERGO a single agent conforms the 

deliberative and executive layers of a traditional three-

layer architecture. This single agent is composed by a 

controller (a generic component, common for any 

robotic asset) and a set of mission-specific 

components. These are the so-called reactors, and 

interact with the agent’s controller using a single 

interface.  

Following the T-REX architecture [11] each reactor is 

aimed to control a single control loop: for instance, in 

a Mars-sample rover application a single reactor (the 

guidance reactor) can be in charge of controlling the 

movement of the rover, meanwhile another reactor can 

be in charge of the control of movements of the rover’s 

robotic arm. 

Reactors are hierarchically structured, so that on top of 

these lower-level reactors there can be a planner 

reactor. This planner reactor is a deliberative 

component, able to decompose higher level goals (e.g. 

“extract a sample at a given position, analyse it, and 

downlink the data when there is communication with 

Ground control”) into a coordinated set of lower-level 

actions, to be performed by the lower-level 

components (e.g., involving a sequence of operations 

for the guidance reactor and robotic arm reactor in 

order to reach a given position and pick a sample). 

At the top of the reactor’s hierarchy, a Ground control 

interface reactor handles the communication with 

Ground. Depending on the needs of the robotic 

application, a different set of reactors can be tailored 

to manage a particular subsystem. Reactors can be 

either reactive or deliberative.  

Therefore the ERGO framework provides an N-

layered architecture, in which different control loops 

(either reactive or deliberative) can be embedded into 

functional blocks (reactors) that use a common 

interface to the (generic) agent controller. Reactors 

that conform the ERGO agent are tailored and adapted 

to the specific robotic platform. 

This agent sub-package provides the framework to be 

used to build reactors, and to embed and link them 

together with the controller. 

Ground Control interface: A main component of 

any space application is the interface with Ground. In 

ERGO the Ground control interface is a reactor in 

charge of handing Telecommands and Telemetry, in 

charge of providing services for different levels of 

autonomy (time-tag commanding for E2, Action-

Event service for E3, on-board planning for E4). This 

reactor is provided as part of the ERGO Framework, 

and can be easily tailored to any specific space robot.  

Stellar Mission Planner: Stellar Mission Planner: In 

ERGO, we develop a new planner that is specifically 

designed to take into consideration the requirements 

for space robotics applications. The input language is 

based on the Planning Domain Definition Language 

(PDDL) [24], a standard planning language. We 

extend PDDL with semantic attachments [25], which 

define external functions that allow a tighter 

integration of the Stellar mission planner and the 

ERGO specific components that are part of SW2 (here, 

the rover guidance and robotic arm subcomponents). 

Stellar is a heuristic forward search planner with 

several adjustments to the challenges of space robotics:  

1. For maximum flexibility and execution stability of 

the provided plans, we associate each state with a 

simple temporal network (STN) that allows to 

describe start times, end times as well as the 

duration of actions as intervals;  

2. States are expanded in a multi-step process to 

delay the (costly) evaluation of STNs and external 

functions;  

3. States are managed in a way that allows to switch 

between a fast yet memory-expensive explicit 

representation of states in memory and a slower 

but memory-light implicit representation of states 

via action sequences; and finally  

4. We believe that the comparably novel class of 

potential heuristics [26] is the perfect candidate for 

a space mission with scarce on-board resources. 

These heuristics are evaluated in a state as the sum 

of the feature weights of all features that hold in 

that state, which takes negligible resources during 

planning time. Since the computation of accurate 

weights is very expensive, we plan to perform this 

step on Ground before the mission starts and 

upload updates only when required. 

BIP Tools: The ERGO framework is extended with 

formal verification and validation capabilities for 

reliability, availability, maintainability and safety 

(RAMS) requirements. The aim is to ensure correct-

by-construction design of safety- and mission-critical 

systems subject to faults and failures, such as robotic 

ones. This feature consists of two (offline) tools 

developed by Verimag based on the BIP framework 

[14]: 

 iFinder. This tool applies a compositional 

verification technique based on invariants to check 

the satisfaction of safety requirements for timed 

systems.  

 FDIR BIP tool. It applies synthesis techniques (i.e., 

a correct-by-construction approach) for obtaining 

FDIR components from the system design, 

requirements to ensure and recovery strategies. 

2.2 SW2: ERGO Specific Components 

This package consists of a set of subcomponents 

aimed to solve specific problems of space robotics 

applications: 

GODA: Most robotic applications require a specific 

module or functional block able to identify patterns 

from images taken by the robot. In ERGO, this 

functionality is provided by a separate package named 

GODA (Goal Oriented Data Analysis). This is a SW 



package developed by SCISYS, able to be used to 

build scientific detection reactors (components), 

capable of detecting serendipitous events. In the 

ERGO architecture, once a serendipitous event is 

detected by GODA, the GODA reactor is able to post 

new goals to the planner (i.e. to take an image of this 

particular area) whenever an interesting event is raised. 

More precisely, GODA processes data from the 

sensors and generates new candidate goals as inputs to 

the re-planning activities.  The GODA component of 

ERGO builds on work from several previous ESA 

studies developed by SCISYS, in particular, the 

MASTER project [16] . 

Rover Guidance (RG): Planetary exploration rovers 

require a set of specific autonomous functionalities to 

enable safe traverse. This includes assessing the 

traversability of the terrain, planning short and long 

term path, detecting and avoiding potential hazards, as 

well as controlling the rover trajectory. This is 

provided by Airbus, building on their experience in the 

ExoMars Rover mission [17]. The RG also estimates 

the resources that the rover requires to perform a long 

traverse, which can be used to inform the on-board 

planner. The RG is specifically designed for fast and 

optimal traverse over long distances and can be 

tailored for different rover platforms. 

Robotic arm: Finally, most robotic platforms are 

equipped with a robotic arm. For these, ERGO 

provides the RARM sub-package that contains a set of 

components in charge of planning & executing the 

movements of the robotic arm. More precisely, these 

components allow to plan and execute trajectories and 

paths between points without any collision. As in the 

previous cases, the corresponding SW can be reused 

across many different platforms. The robotic arm 

component is developed by GMV. 

3 INSTANTIATING ERGO 

3.1 The Instantiation Methodology 

<<TASTE Function>>
Agent

GCI Reactor

Command Dispatcher Reactors

Mission Planner Reactor

Functional Layer

<<TASTE Function>> 
FL_Component_1

<<TASTE Function>> 
FL_Component_N

I/F Agent --> FL

I/F FL --> Agent

Step 3: Functional Layer modelling

Step 2: Agent & Reactors modelling

Step 1: Planning domain modelling.

Planner Models

PDDL Models

External 
Functions

Figure 2: Instantiating ERGO for a robotic platform 

The instantiation of ERGO is a process that involves a 

number of design and implementation tasks and 

design decisions.  ERGO relies on three different 

components that need to be tailored for each mission, 

and which are shown in the figure below: 

Step 1: Definition of the planner models: domain and 

problem PDDL files that describe the planning model 

as well as an implementation of the external functions 

that are used in the domain.  

Step 2: Definition of the reactors that will conform 

the agent. It contains the executive and the deliberative 

layers of our architecture. It is composed of reactors 

that share a common interface. Each reactor is 

responsible of a set of timelines (state variables) of the 

system (see [11]). In the ERGO architecture, three 

different types of reactors are envisaged: 

 The Ground control interface reactor that can be 

developed by tailoring the Ground control interface 

services provided in SW1 

 The Mission planner reactor that can be 

developed by tailoring the mission planner 

reactor provided in SW1 (containing Stellar, the 

mission planner). 

 A set of reactors that interface with the functional 

layer, that is, forward the commands of the 

executive and receive observations from the 

functional layer. These are the so-called 

“command dispatcher” reactors in the ERGO 

architecture. 

Step 3: Development of the functional layer built 

using a set of TASTE functions (software 

components), in which some of the components of 

SW2 can be used. 

The ERGO agent is a single TASTE function (i.e. 

component) that interfaces with the functional layer (a 

set of TASTE functions) via specific application-

interfaces which are also modelled with TASTE. From 

a TASTE model, code can be generated and deployed 

for different platforms (namely, Linux and RTEMS).  

For the development of the functional layer, the 

following tasks need to be accomplished. 

Step 3.1: Identification of existing software libraries 

and components that conform to the functional layer. 

For the majority of the robotic platforms there are 

existing software modules already developed and 

tested. The experience accumulated by GMV in the 

SARGON project [18] showed that the best 

approach it to take advantage of this fact, reusing 

this software, generating libraries that can be easily 

plugged in into TASTE functions. 

In some areas, there may not be software modules 

readily available, but there are existing algorithms 

that can be wrapped within TASTE functions, or 

there can be procedures comprising low-level tasks 

which could be reused. 

Step 3.2: Identification of existing TASTE modules 

that can be used straight away. Any previous 

components developed in TASTE are ideal 

candidates for a possible reuse without changes.  



Step 3.3: After the identification of modules to be 

reused or to be designed from scratch or by reusing 

existing procedures or algorithms, the next task is to 

define the corresponding views in TASTE: interface 

view, deployment view, data view and concurrency 

view.  

The constraints to be enforced at run time must be 

identified. These may come from mission 

requirements or from constraints on the robotic 

system. They are required to guarantee the safety of 

the mission. 

The suitability of the processor budget must be 

assessed. It shall include an estimation of the 

required resources, mainly CPU and memory. 

The interfaces must be made explicit, including the 

available provided and requested interfaces. This is 

not only a task of the analysis of the functional layer; 

the requirements for this will also come from the 

executive layer. 

From the TASTE generated code, the provided 

interfaces will need to be implemented. 

3.2 ERGO Use Cases 

Two different use cases have been developed in ERGO. 

The first use case is the planetary exploration rover, 

inspired from the Mars Sample Return (MSR) mission 

that covers the concepts and requirements of the 

Martian Long Range Autonomous Scientist, a Martian 

rover that can be commanded to operate in a multi-sol 

operations scheme and is able to perform long traverses. 

For this scenario the SherpaTT rover from DFKI was 

selected. 

 

Figure 3: The Sherpa TT robot (courtesy DFKI) 

The second scenario chosen is the On-Orbit Servicing 

mission, where a damaged spacecraft can have one of 

its modules replaced autonomously by a servicer 

spacecraft. 

 

Figure 4: Orbital use case 

In the following sections, we describe the use of the 

framework to build both use cases. 

3.3 Planetary Demonstrator  

This section describes the ERGO framework 

instantiation for the Planetary Exploration 

Demonstrator Software, illustrated in Fig. 5 

 

Figure 5: ERGO framework – planetary scenario 

Following the methodology described in the previous 

section, the architecture for the planetary rover 

consisted on the following components: 

 As part of the agent, a Ground Control interface 

reactor, tailored from the generic component in the 

ERGO framework, handles use-case specific 

telemetry and telecommands. It is able to process 

direct telecommands (E1), time-tagged commands 

(E2), event-driven actions (E3) and goal 

commanding (E4), via the mission planner. 

 High-level commands (E4) are processed by a 

dedicated Mission Planner reactor. This 

component receives high level commands that are 

used to generate a mission plan. This mission plan, 

as generated by the planner, contains a set of sub-

goals to be executed at given times, together with a 

set of constraints to be matched. The mission 

planner reactor uses a specific PDDL domain and 

problem.  

 The agent has also a scientific detector reactor. The 

so-called GODA reactor (that uses the GODA 

component provided by SCISYS) receives high-

level goals in order to detect serendipitous events 

when the rover is traversing through specific areas 

by analysing images provided by the camera. 

When this occurs, a new goal is sent to the mission 

planner in order to go to a position and take images 

of the event detected. The planner is then able to 



re-plan based on the new goals. 

 An additional set of reactors of the agent conform 

the so-called “Command Dispatcher reactors”: 

they interface directly to the functional layer. These 

receive low level goals from the mission planner 

(e.g. going to a desired position) and receive 

observations from the functional layer that indicate 

the results of the execution. 

Finally the functional layer consists of a set of TASTE 

functions developed specifically for this use case, these 

are: 

 Antenna: a simulated component for the antenna 

used to communicate with Ground. 

 Battery: provides the battery level of the rover. 

 Camera: interface to the Rover Cameras. 

 FDIR: A component aimed to detect & isolate 

errors that could jeopardize the mission during 

execution.  

 Guidance Control: Contains the Rover Guidance 

functionality embedded as a TASTE function. This 

Function uses the Guidance component detailed in 

SW2. 

 Planetary Robotic Arm control: contains the 

Robotic arm control for the Planetary. This 

function uses the Robotic Arm component 

provided in SW2. 

3.4 Orbital Demonstrator  

The planetary orbital demonstrator is a scenario in 

which a chaser spacecraft approaches a target, and is 

able to reconfigure it via a robotic arm. The chaser has 

a tray that is used to exchange a set of APMs. The 

chaser will reconfigure the target S/C, so the target 

must simulate a modular S/C with some 

faulty/damaged modules which the chaser will have to 

replace in orbit. 

 

Figure 6: ERGO orbital components 

The architecture is depicted in Fig. 6.  Note that in the 

orbital component, the AOCS system is not part of the 

ERGO components. 

The Ground control interface processes E1, E2, E3 and 

E4 telecommands. High level goals (E4) are sent from 

Ground to perform changes of the configuration of the 

target spacecraft. The mission planner identifies the set 

of operations (elementary operations such as picking, 

or dropping an APM) to be performed by the robotic 

arm to reach the desired configuration(s). It does so by 

using specific PDDL models (domain and problem) 

generated specifically for this use case. 

A specific set of command dispatcher reactors (battery 

and orbital robotic arm) interface with the functional 

layer to perform the corresponding commands and 

received the corresponding observations. 

The functional layer developed for this use case 

includes an FDIR component, a Battery component 

and a robotic arm component, able to perform robotic 

arm path planning and execution. 

4 V&V APPROACH 

Robotic applications have demanding RAMS 

requirements, which need to be checked for 

satisfaction on the system design before deployment. 

This requires the use of formal models and methods, 

and in the frame of ERGO we propose and extend the 

BIP framework.  

BIP (Behaviour, Interaction, Priority) [14] is a formal 

language and framework that allows for rigorous 

component-based system design. The language is 

based on the well-established theory of Timed Petri 

Nets/Timed Automata [19], where components are 

basically modelled as state machines and communicate 

through (different types of) message exchanges. The 

BIP tools, described hereafter, provide different 

analysis techniques at different layers of design 

granularity which consolidate the confidence on the 

system’s correctness. We mention that the BIP 

framework has already been successfully applied for 

the design and analysis of different robotics systems 

[20],[21]. 

The design workflow with the BIP tools is illustrated 

in Fig. 7. These tools can be directly applied on the 

ERGO TASTE designs (and not only) via an 

automated model transformation from TASTE to BIP. 

This transformation, under development in another 

PERASPERA SRC project, generates an application 

software BIP model which can be subject to 

compositional invariant-based verification with 

iFinder or automated synthesis of FDIR components 

with the BIP FDIR tool. Additionally, the design 

process allows one to refine this model into a 

distributed system model by integrating the hardware 

architecture as well as performance constraints. The 

BIP compiler and engines and SMC-BIP allow 

simulating and validating the performance constraints 

of both the application and distributed system model. 

As commented in Section 2.1, the ERGO framework 

includes the iFinder and BIP FDIR tools for formal 

verification & validation purposes. iFinder checks the 

satisfaction of safety requirements in a compositional 

approach: it computes invariants (i.e., constraints that 

hold at every execution step) for each component 

independently and next for their interaction based on 

the system structure. The formula obtained in 



conjunction with the negation of the safety requirement 

is given as input to the Z3 SMT solver [23]. If the 

requirement does not check, the solver returns a 

counterexample and either the system design must be 

refined or assumptions are added to the model in the 

form of invariants. The process is repeated until the 

counterexample obtained is either a valid one (and then 

the system is incorrect), or no counterexamples are 

generated anymore. 

The BIP FDIR tool applies automated synthesis 

techniques to generate from a timed system design 

(including FDIR architecture), recovery strategies and 

safety requirements to enforce an FDIR (Fault 

Detection, Isolation and Recovery) component. We 

describe in the following the workflow of the tool, for 

the algorithms devised and their implementation the 

reader is referred to [22]. 

In order to apply this tool, several manual steps are 

needed beforehand. A developer needs to analyse the 

system requirements in order to obtain an extended 

system design. Such a design includes the nominal 

model which should satisfy by default the safety 

requirements, and the error model which describes 

what faults are possible in the system and the behaviour 

after a fault occurs. These models could be obtained 

separately and incorporated into the extended model 

through automated automata merging algorithms. Also, 

one needs to analyse these requirements and connect 

them to parts (components or sub-systems) of the 

system design in order to build the FDIR architecture: 

one or multiple FDIR components which can be 

centralized or distributed across the platform, 

monolithical or hierarchical in their structure. Then, 

with respect to the extended model and FDIR 

architecture, the recovery strategies are described for 

each fault type: the functional steps to be executed and 

their order to bring the system back to the nominal 

behaviour where requirements hold.  

The faults (types) of the extended model are checked 

for diagnosability. Diagnosability is the fault detection 

condition provided partial observation of the system: 

given a set of sensors (possibly minimal) can the 

occurrence of the fault be identified? Formally 

speaking, diagnosability checks that given a set of 

observable actions, there are no nominal and faulty 

executions that give the same observation (trace). The 

minimal set of observations as well as the faults most 

probable to occur for which this condition should be 

checked can be obtained through model-based safety 

assessment techniques.  

Once this condition is satisfied for all or the most 

relevant faults, the tool proceeds with synthesizing a 

diagnoser. The diagnoser is a component that runs in 

parallel with the system and gives a verdict about 

whether a fault has occurred or not yet. The diagnoser 

raises an alarm when the fault is detected which 

triggers the controller. The controller is based on the 

recovery strategy specified for the fault (type) and aims 

to bring the system back to states/modes where the 

safety requirements hold. The controller is also 

automatically synthesized by the FDIR tool which 

assembles it together with the diagnoser(s). Finally, the 

tool generates C++ code from the synthesized FDIR 

component that can be put in the original TASTE 

system design and run online in the actual system. For 

more details the reader is referred to [22]. 

 

Figure 7: System design process in the context of the BIP 

framework. 

5 CONCLUSIONS 

The ERGO framework provides a set of building 

blocks that can be used for the development of any 

robotic asset requiring a high level of autonomy.  

In the ERGO architecture, meanwhile, autonomy 

levels E1 (telecommanding) to E2 (time-tag 

commanding) are covered by a (generic) Ground 

control interface component, E3 and E4 are covered 

by a mission planning component, which contains an 

on-board planner and scheduler provided as part of 

the core framework. An interface with the Functional 

Layer (the Command Dispatcher reactors) provides 

the executive layer. 

The executive and deliberative layers are embedded 

into a single agent in charge of the management of a 

set of control loops. Components of the agent are 

called reactors and benefit from a single interface.to 

the agent’s controller. The planner, the Ground 

Control interface and the agent are designed to be 

tailored for any specific mission. PDDL models of 

the system need to be defined, as well as a set of state 

variables (timelines) handled internally by the agent. 

The framework is structured in such a way that it 

provides core utilities (able to be used in any robotic 

platform) and specific utilities (covering dedicated 

functionalities, like the guidance of a planetary rover, 

the handling of a robotic arm, or the automatic 

identification of serendipitous events based on 

images). These components are provided in the form 

of generic libraries that can be re-used in different 

developments. 

ERGO uses a Model-driven Development (MDD) 

approach based on TASTE. TASTE is the tool that 

allows to develop the components of the system, and 

to define the interfaces among all them. Moreover, 



the BIP verification and validation tools provided by 

ERGO can be used to check the correctness of the 

design.  

From the user’s perspective, the ERGO framework 

provides many features, most of them could not be 

required for a particular robotic asset, but the 

modularity of the system allows the user to pick 

those features that are necessary for a particular 

robotic instantiation. 
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