
ABSTRACT

The European Robotic Goal-Oriented Autonomous

Controller ERGO [1] is one of the six space robotic

projects in the frame of the PERASPERA SRC [2]. Its

main objective is to provide an autonomous

framework for future space robots that will be able to

perform its activities without the need of constant

human supervision and control. Future space

missions, in particular those aimed at Deep Space or

planetary exploration, such as Exomars [3], or

Mars2020 [4] demand a greater level of autonomy.

The concept of autonomy applies here to a whole set

of operations to be performed on-board without

human supervision; for instance, a Martian rover has

to avoid getting stuck in the sand while traversing,

autonomously recharge its batteries periodically, and

communicate with Earth occasionally each sol [5] .

Additionally, it will need to be able to detect

serendipitous events (e.g. a rock that has a specific

property). A deep space probe [6] has to take the right

measurements to approach an asteroid, and due to the

latency of the communication with Ground, these

measurements need to be taken autonomously on

board. Orbital space missions have already

successfully applied autonomy concepts on board, in

particular for autonomous event detection and on-

board activities planning [7].

In ERGO we provide a framework for autonomy

aimed to cover a wide set of a capabilities, ranging

from reactive capabilities (i.e. capabilities that

demand a quick response) to deliberative capabilities

(that consider different courses of actions, and

evaluate among the different possibilities the best

alternative).

This paper will discuss the process of the design of

robotic systems using the paradigm provided by this

framework applied to two different scenarios: a

Sample Fetching Rover (SFR), and also an On-Orbit

Servicing mission, where a damaged spacecraft can

have one or several of its modules replaced

autonomously by a servicer spacecraft. We will

describe the methodology, the main problems found,

the design decisions taken to overcome these

problems, as well as an overview of the final design

of both systems

1 INTRODUCTION

Control architectures form the backbone of complete

robotic systems. Complex robotic systems require

concurrent embedded real-time performance, and are

typically too complex to be developed and operated

using conventional programming techniques. The

complex demands of such systems require

frameworks and tools that are based on well-defined

concepts that enable the effective realization of

systems to meet high-level goals.

An autonomous software framework represents a type

of system commonly known in the literature as a

robotic architecture, the backbone of the autonomous

robotic software around which the rest of the

components are defined. A typical architecture is

divided into layers to improve the modularity and cater

for the different latencies demanded during the

construction of plans and execution. Literature

distinguishes among three types of approaches:

Deliberative architectures are a classical approach

to building controllers, namely, a particular type of

knowledge-based system and is defined to be one that

contains an explicitly represented symbolic model of

the world. The approach suggests that intelligent

behaviour can be generated by providing a system

with a symbolic representation of its environment and

its desired behaviour and by syntactically

manipulating this representation. The core of this

deliberative architecture is a planner, which elaborates

plans based on the knowledge of the problem domain.

A plan defines a series of actions designed to

accomplish a set of goals but not violate any resource

limitation, temporal or state constraints, or other

spacecraft or rover operation rules. But any plan, no

matter how it is generated, requires the help of an

execution system to be useful for real-world execution.

Reactive architectures are based on the idea that

USING THE ERGO FRAMEWORK FOR SPACE ROBOTICS IN
A PLANETARY AND AN ORBITAL SCENARIO

*J. Ocón
1
, K. Buckley

1
, F.J. Colmenero

1
, S. Bensalem

2
, I. Dragomir

2
, S.

Karachalios
3
, M. Woods

3
, F. Pommerening

4
, T.Keller

4

1GMV Aerospace and Defense, Isaac Newton 11 PTM Tres Cantos 28760, Spain, Email : jocon@gmv.com

2Universite Grenoble Alpes, 700 Avenue Centrale 38400 St Martin D’Heres, France, Email: {saddek.bensalem|iulia.dragomi@univ-

grenoble-alpes.fr}

3SCISYS UK Ltd, Methuen Park Chippenham SN14 0GB, UK, Email: mark.woods@scisys.co.uk

4University of Basel, Spiegelgasse 1, 4051 Basel, Switzerland, Email: {florian.pommerening|tho.keller}@unibas.ch

mailto:jocon@gmv.com
mailto:mark.woods@scisys.co.uk
mailto:%20%7bflorian.pommerening%7Ctho.keller%7d@unibas.ch

intelligent rational behaviour is innately linked to the

environment and the idea that intelligent behaviour

emerges from the interaction of various simpler

behaviours. In rapidly changing environments, such as

the real world, where the controller must react quickly

to external changes, there may not be time available to

perform many time-consuming actions such as

planning and introspection. In this case an agent with

a reactive, or behavioural, architecture may be more

appropriate.

Layered architectures contain a slower,

deliberative reasoning system in charge of deciding

the strategic plan and a fast, reactive system in charge

of reacting to unexpected changes of the environment.

This approach breaks down the different proactive and

reactive elements of a controller into different layers.

This level of abstraction allows complex controllers to

be modelled more easily and is flexible enough for use

in many robotic environments. The classical layered

architecture found in many systems is a three-layered

architecture, in which a deliberative layer receives

high goals that are managed by an executive layer that

in turn interfaces with the lowest, functional layer.

In ERGO a robotic controller, based on GMV

experiences on previous research projects for

autonomy (like GOAC [8] and GOTCHA [9])

provides a paradigm for handling autonomy

capabilities, in which different control loops are

managed during execution by a central agent

controller, which guarantees a harmonic execution of

both reactive and deliberative behaviours. This

architecture is based on previous systems, namely

IDEA [10], and T-REX [11].

The ERGO architecture for autonomy is a layered

architecture, in which a set of reactive and deliberative

control loops are embedded into an agent. The agent

as a whole contains the executive and deliberative

layers that are found in a three-layer architecture. In

ERGO, the system is divided in two main components:

the robotic functional layer, and the agent.

Deliberative capabilities in ERGO are provided by the

use of an on-board planner. One of the main

components of ERGO is a newly developed planning

system, Stellar, a PDDL-based planner being

developed by Kings College London, the University

of Basel and GMV-UK.

Moreover, ERGO is designed having in mind a model-

driven-development (MDD) approach. It does so by

using the TASTE technology. TASTE [12] is a Model

Driven Engineering approach that provides a

methodology and a set of tools to build dependable

embedded software with real-time constraints. It has

been developed as a follow-on of the ASSERT EC-

FP6 project, and has been promoted and founded by

ESA. TASTE is the middleware selected for

ESROCOS [13], which is also a robotic project of the

PERASPERA SRC aimed to the development of a

robotic operating system able to be used in space. By

using TASTE in the ERGO framework we guarantee

a strong synergy with both projects, as well as its

future compatibility. In addition to these capabilities,

ERGO also uses the BIP Framework [14] to integrate

nominal and error models, and simulate the behaviour

of the system in presence of faults.

Figure 1: ERGO framework SW packages

2 ERGO SW COMPONENTS

The ERGO framework provides a set of packages and

components that can be reused and tailored to develop

a robotic platform that can be commanded using any

of the 4 levels of autonomy defined in the ECSS

Standards [15] , that is:

 E1 Direct telecommanding processed as they are

received from Ground.

 E2 Time-tag commanding: commands are set

with an associated time-tag, and executed at a

designated time.

 E3 Event-driven: in which a set of pre-defined

events trigger on-board control procedures or

direct commands.

 E4 Goal commanding: in which the system is

commanded via high-level goals that are

decomposed by a planner into a sequence of lower

level commands to be executed. An executive

controls the execution of these low-level

commands.

The main packages and their components of the

ERGO framework are shown in Figure 1. The ERGO

Framework is composed of four main SW packages.

The first two packages (SW1 and SW2) are aimed to

be re-used across different robotic platforms

meanwhile the remaining packages (SW3 and SW4)

contain the SW for two specific implementations of

ERGO (the so-called ERGO use cases, described in

section 3 of this paper). In the following, we will

describe the contents of SW1 and SW2 that provide a

set of common components developed to be reused

across different robotic platforms.

2.1 SW1: ERGO Core Framework

The first and most important package of ERGO is the

core framework. The core framework package

provides a set of tools to build an autonomous robotic

system in any robotic application. It contains the

following sub-packages:

pkg OG2 Packages

SW1: ERGO Core Framework

+ GCI_Library

+ TASTE_Extensions

+ Agent

+ Stellar Planner

+ BIP tools

SW3: ERGO Planetary

+ FunctionalSherpa

+ Reactors_Sherpa

SW2: ERGO Specific components

+ GODA

+ Guidance

+ RARM

SW4: ERGO orbital

+ Functional Orbital

+ ReactorsOrbital

«use»

«use»

«use»
«use»

Agent: In ERGO a single agent conforms the

deliberative and executive layers of a traditional three-

layer architecture. This single agent is composed by a

controller (a generic component, common for any

robotic asset) and a set of mission-specific

components. These are the so-called reactors, and

interact with the agent’s controller using a single

interface.

Following the T-REX architecture [11] each reactor is

aimed to control a single control loop: for instance, in

a Mars-sample rover application a single reactor (the

guidance reactor) can be in charge of controlling the

movement of the rover, meanwhile another reactor can

be in charge of the control of movements of the rover’s

robotic arm.

Reactors are hierarchically structured, so that on top of

these lower-level reactors there can be a planner

reactor. This planner reactor is a deliberative

component, able to decompose higher level goals (e.g.

“extract a sample at a given position, analyse it, and

downlink the data when there is communication with

Ground control”) into a coordinated set of lower-level

actions, to be performed by the lower-level

components (e.g., involving a sequence of operations

for the guidance reactor and robotic arm reactor in

order to reach a given position and pick a sample).

At the top of the reactor’s hierarchy, a Ground control

interface reactor handles the communication with

Ground. Depending on the needs of the robotic

application, a different set of reactors can be tailored

to manage a particular subsystem. Reactors can be

either reactive or deliberative.

Therefore the ERGO framework provides an N-

layered architecture, in which different control loops

(either reactive or deliberative) can be embedded into

functional blocks (reactors) that use a common

interface to the (generic) agent controller. Reactors

that conform the ERGO agent are tailored and adapted

to the specific robotic platform.

This agent sub-package provides the framework to be

used to build reactors, and to embed and link them

together with the controller.

Ground Control interface: A main component of

any space application is the interface with Ground. In

ERGO the Ground control interface is a reactor in

charge of handing Telecommands and Telemetry, in

charge of providing services for different levels of

autonomy (time-tag commanding for E2, Action-

Event service for E3, on-board planning for E4). This

reactor is provided as part of the ERGO Framework,

and can be easily tailored to any specific space robot.

Stellar Mission Planner: Stellar Mission Planner: In

ERGO, we develop a new planner that is specifically

designed to take into consideration the requirements

for space robotics applications. The input language is

based on the Planning Domain Definition Language

(PDDL) [24], a standard planning language. We

extend PDDL with semantic attachments [25], which

define external functions that allow a tighter

integration of the Stellar mission planner and the

ERGO specific components that are part of SW2 (here,

the rover guidance and robotic arm subcomponents).

Stellar is a heuristic forward search planner with

several adjustments to the challenges of space robotics:

1. For maximum flexibility and execution stability of

the provided plans, we associate each state with a

simple temporal network (STN) that allows to

describe start times, end times as well as the

duration of actions as intervals;

2. States are expanded in a multi-step process to

delay the (costly) evaluation of STNs and external

functions;

3. States are managed in a way that allows to switch

between a fast yet memory-expensive explicit

representation of states in memory and a slower

but memory-light implicit representation of states

via action sequences; and finally

4. We believe that the comparably novel class of

potential heuristics [26] is the perfect candidate for

a space mission with scarce on-board resources.

These heuristics are evaluated in a state as the sum

of the feature weights of all features that hold in

that state, which takes negligible resources during

planning time. Since the computation of accurate

weights is very expensive, we plan to perform this

step on Ground before the mission starts and

upload updates only when required.

BIP Tools: The ERGO framework is extended with

formal verification and validation capabilities for

reliability, availability, maintainability and safety

(RAMS) requirements. The aim is to ensure correct-

by-construction design of safety- and mission-critical

systems subject to faults and failures, such as robotic

ones. This feature consists of two (offline) tools

developed by Verimag based on the BIP framework

[14]:

 iFinder. This tool applies a compositional

verification technique based on invariants to check

the satisfaction of safety requirements for timed

systems.

 FDIR BIP tool. It applies synthesis techniques (i.e.,

a correct-by-construction approach) for obtaining

FDIR components from the system design,

requirements to ensure and recovery strategies.

2.2 SW2: ERGO Specific Components

This package consists of a set of subcomponents

aimed to solve specific problems of space robotics

applications:

GODA: Most robotic applications require a specific

module or functional block able to identify patterns

from images taken by the robot. In ERGO, this

functionality is provided by a separate package named

GODA (Goal Oriented Data Analysis). This is a SW

package developed by SCISYS, able to be used to

build scientific detection reactors (components),

capable of detecting serendipitous events. In the

ERGO architecture, once a serendipitous event is

detected by GODA, the GODA reactor is able to post

new goals to the planner (i.e. to take an image of this

particular area) whenever an interesting event is raised.

More precisely, GODA processes data from the

sensors and generates new candidate goals as inputs to

the re-planning activities. The GODA component of

ERGO builds on work from several previous ESA

studies developed by SCISYS, in particular, the

MASTER project [16] .

Rover Guidance (RG): Planetary exploration rovers

require a set of specific autonomous functionalities to

enable safe traverse. This includes assessing the

traversability of the terrain, planning short and long

term path, detecting and avoiding potential hazards, as

well as controlling the rover trajectory. This is

provided by Airbus, building on their experience in the

ExoMars Rover mission [17]. The RG also estimates

the resources that the rover requires to perform a long

traverse, which can be used to inform the on-board

planner. The RG is specifically designed for fast and

optimal traverse over long distances and can be

tailored for different rover platforms.

Robotic arm: Finally, most robotic platforms are

equipped with a robotic arm. For these, ERGO

provides the RARM sub-package that contains a set of

components in charge of planning & executing the

movements of the robotic arm. More precisely, these

components allow to plan and execute trajectories and

paths between points without any collision. As in the

previous cases, the corresponding SW can be reused

across many different platforms. The robotic arm

component is developed by GMV.

3 INSTANTIATING ERGO

3.1 The Instantiation Methodology

<<TASTE Function>>
Agent

GCI Reactor

Command Dispatcher Reactors

Mission Planner Reactor

Functional Layer

<<TASTE Function>>
FL_Component_1

<<TASTE Function>>
FL_Component_N

I/F Agent --> FL

I/F FL --> Agent

Step 3: Functional Layer modelling

Step 2: Agent & Reactors modelling

Step 1: Planning domain modelling.

Planner Models

PDDL Models

External
Functions

Figure 2: Instantiating ERGO for a robotic platform

The instantiation of ERGO is a process that involves a

number of design and implementation tasks and

design decisions. ERGO relies on three different

components that need to be tailored for each mission,

and which are shown in the figure below:

Step 1: Definition of the planner models: domain and

problem PDDL files that describe the planning model

as well as an implementation of the external functions

that are used in the domain.

Step 2: Definition of the reactors that will conform

the agent. It contains the executive and the deliberative

layers of our architecture. It is composed of reactors

that share a common interface. Each reactor is

responsible of a set of timelines (state variables) of the

system (see [11]). In the ERGO architecture, three

different types of reactors are envisaged:

 The Ground control interface reactor that can be

developed by tailoring the Ground control interface

services provided in SW1

 The Mission planner reactor that can be

developed by tailoring the mission planner

reactor provided in SW1 (containing Stellar, the

mission planner).

 A set of reactors that interface with the functional

layer, that is, forward the commands of the

executive and receive observations from the

functional layer. These are the so-called

“command dispatcher” reactors in the ERGO

architecture.

Step 3: Development of the functional layer built

using a set of TASTE functions (software

components), in which some of the components of

SW2 can be used.

The ERGO agent is a single TASTE function (i.e.

component) that interfaces with the functional layer (a

set of TASTE functions) via specific application-

interfaces which are also modelled with TASTE. From

a TASTE model, code can be generated and deployed

for different platforms (namely, Linux and RTEMS).

For the development of the functional layer, the

following tasks need to be accomplished.

Step 3.1: Identification of existing software libraries

and components that conform to the functional layer.

For the majority of the robotic platforms there are

existing software modules already developed and

tested. The experience accumulated by GMV in the

SARGON project [18] showed that the best

approach it to take advantage of this fact, reusing

this software, generating libraries that can be easily

plugged in into TASTE functions.

In some areas, there may not be software modules

readily available, but there are existing algorithms

that can be wrapped within TASTE functions, or

there can be procedures comprising low-level tasks

which could be reused.

Step 3.2: Identification of existing TASTE modules

that can be used straight away. Any previous

components developed in TASTE are ideal

candidates for a possible reuse without changes.

Step 3.3: After the identification of modules to be

reused or to be designed from scratch or by reusing

existing procedures or algorithms, the next task is to

define the corresponding views in TASTE: interface

view, deployment view, data view and concurrency

view.

The constraints to be enforced at run time must be

identified. These may come from mission

requirements or from constraints on the robotic

system. They are required to guarantee the safety of

the mission.

The suitability of the processor budget must be

assessed. It shall include an estimation of the

required resources, mainly CPU and memory.

The interfaces must be made explicit, including the

available provided and requested interfaces. This is

not only a task of the analysis of the functional layer;

the requirements for this will also come from the

executive layer.

From the TASTE generated code, the provided

interfaces will need to be implemented.

3.2 ERGO Use Cases

Two different use cases have been developed in ERGO.

The first use case is the planetary exploration rover,

inspired from the Mars Sample Return (MSR) mission

that covers the concepts and requirements of the

Martian Long Range Autonomous Scientist, a Martian

rover that can be commanded to operate in a multi-sol

operations scheme and is able to perform long traverses.

For this scenario the SherpaTT rover from DFKI was

selected.

Figure 3: The Sherpa TT robot (courtesy DFKI)

The second scenario chosen is the On-Orbit Servicing

mission, where a damaged spacecraft can have one of

its modules replaced autonomously by a servicer

spacecraft.

Figure 4: Orbital use case

In the following sections, we describe the use of the

framework to build both use cases.

3.3 Planetary Demonstrator

This section describes the ERGO framework

instantiation for the Planetary Exploration

Demonstrator Software, illustrated in Fig. 5

Figure 5: ERGO framework – planetary scenario

Following the methodology described in the previous

section, the architecture for the planetary rover

consisted on the following components:

 As part of the agent, a Ground Control interface

reactor, tailored from the generic component in the

ERGO framework, handles use-case specific

telemetry and telecommands. It is able to process

direct telecommands (E1), time-tagged commands

(E2), event-driven actions (E3) and goal

commanding (E4), via the mission planner.

 High-level commands (E4) are processed by a

dedicated Mission Planner reactor. This

component receives high level commands that are

used to generate a mission plan. This mission plan,

as generated by the planner, contains a set of sub-

goals to be executed at given times, together with a

set of constraints to be matched. The mission

planner reactor uses a specific PDDL domain and

problem.

 The agent has also a scientific detector reactor. The

so-called GODA reactor (that uses the GODA

component provided by SCISYS) receives high-

level goals in order to detect serendipitous events

when the rover is traversing through specific areas

by analysing images provided by the camera.

When this occurs, a new goal is sent to the mission

planner in order to go to a position and take images

of the event detected. The planner is then able to

re-plan based on the new goals.

 An additional set of reactors of the agent conform

the so-called “Command Dispatcher reactors”:

they interface directly to the functional layer. These

receive low level goals from the mission planner

(e.g. going to a desired position) and receive

observations from the functional layer that indicate

the results of the execution.

Finally the functional layer consists of a set of TASTE

functions developed specifically for this use case, these

are:

 Antenna: a simulated component for the antenna

used to communicate with Ground.

 Battery: provides the battery level of the rover.

 Camera: interface to the Rover Cameras.

 FDIR: A component aimed to detect & isolate

errors that could jeopardize the mission during

execution.

 Guidance Control: Contains the Rover Guidance

functionality embedded as a TASTE function. This

Function uses the Guidance component detailed in

SW2.

 Planetary Robotic Arm control: contains the

Robotic arm control for the Planetary. This

function uses the Robotic Arm component

provided in SW2.

3.4 Orbital Demonstrator

The planetary orbital demonstrator is a scenario in

which a chaser spacecraft approaches a target, and is

able to reconfigure it via a robotic arm. The chaser has

a tray that is used to exchange a set of APMs. The

chaser will reconfigure the target S/C, so the target

must simulate a modular S/C with some

faulty/damaged modules which the chaser will have to

replace in orbit.

Figure 6: ERGO orbital components

The architecture is depicted in Fig. 6. Note that in the

orbital component, the AOCS system is not part of the

ERGO components.

The Ground control interface processes E1, E2, E3 and

E4 telecommands. High level goals (E4) are sent from

Ground to perform changes of the configuration of the

target spacecraft. The mission planner identifies the set

of operations (elementary operations such as picking,

or dropping an APM) to be performed by the robotic

arm to reach the desired configuration(s). It does so by

using specific PDDL models (domain and problem)

generated specifically for this use case.

A specific set of command dispatcher reactors (battery

and orbital robotic arm) interface with the functional

layer to perform the corresponding commands and

received the corresponding observations.

The functional layer developed for this use case

includes an FDIR component, a Battery component

and a robotic arm component, able to perform robotic

arm path planning and execution.

4 V&V APPROACH

Robotic applications have demanding RAMS

requirements, which need to be checked for

satisfaction on the system design before deployment.

This requires the use of formal models and methods,

and in the frame of ERGO we propose and extend the

BIP framework.

BIP (Behaviour, Interaction, Priority) [14] is a formal

language and framework that allows for rigorous

component-based system design. The language is

based on the well-established theory of Timed Petri

Nets/Timed Automata [19], where components are

basically modelled as state machines and communicate

through (different types of) message exchanges. The

BIP tools, described hereafter, provide different

analysis techniques at different layers of design

granularity which consolidate the confidence on the

system’s correctness. We mention that the BIP

framework has already been successfully applied for

the design and analysis of different robotics systems

[20],[21].

The design workflow with the BIP tools is illustrated

in Fig. 7. These tools can be directly applied on the

ERGO TASTE designs (and not only) via an

automated model transformation from TASTE to BIP.

This transformation, under development in another

PERASPERA SRC project, generates an application

software BIP model which can be subject to

compositional invariant-based verification with

iFinder or automated synthesis of FDIR components

with the BIP FDIR tool. Additionally, the design

process allows one to refine this model into a

distributed system model by integrating the hardware

architecture as well as performance constraints. The

BIP compiler and engines and SMC-BIP allow

simulating and validating the performance constraints

of both the application and distributed system model.

As commented in Section 2.1, the ERGO framework

includes the iFinder and BIP FDIR tools for formal

verification & validation purposes. iFinder checks the

satisfaction of safety requirements in a compositional

approach: it computes invariants (i.e., constraints that

hold at every execution step) for each component

independently and next for their interaction based on

the system structure. The formula obtained in

conjunction with the negation of the safety requirement

is given as input to the Z3 SMT solver [23]. If the

requirement does not check, the solver returns a

counterexample and either the system design must be

refined or assumptions are added to the model in the

form of invariants. The process is repeated until the

counterexample obtained is either a valid one (and then

the system is incorrect), or no counterexamples are

generated anymore.

The BIP FDIR tool applies automated synthesis

techniques to generate from a timed system design

(including FDIR architecture), recovery strategies and

safety requirements to enforce an FDIR (Fault

Detection, Isolation and Recovery) component. We

describe in the following the workflow of the tool, for

the algorithms devised and their implementation the

reader is referred to [22].

In order to apply this tool, several manual steps are

needed beforehand. A developer needs to analyse the

system requirements in order to obtain an extended

system design. Such a design includes the nominal

model which should satisfy by default the safety

requirements, and the error model which describes

what faults are possible in the system and the behaviour

after a fault occurs. These models could be obtained

separately and incorporated into the extended model

through automated automata merging algorithms. Also,

one needs to analyse these requirements and connect

them to parts (components or sub-systems) of the

system design in order to build the FDIR architecture:

one or multiple FDIR components which can be

centralized or distributed across the platform,

monolithical or hierarchical in their structure. Then,

with respect to the extended model and FDIR

architecture, the recovery strategies are described for

each fault type: the functional steps to be executed and

their order to bring the system back to the nominal

behaviour where requirements hold.

The faults (types) of the extended model are checked

for diagnosability. Diagnosability is the fault detection

condition provided partial observation of the system:

given a set of sensors (possibly minimal) can the

occurrence of the fault be identified? Formally

speaking, diagnosability checks that given a set of

observable actions, there are no nominal and faulty

executions that give the same observation (trace). The

minimal set of observations as well as the faults most

probable to occur for which this condition should be

checked can be obtained through model-based safety

assessment techniques.

Once this condition is satisfied for all or the most

relevant faults, the tool proceeds with synthesizing a

diagnoser. The diagnoser is a component that runs in

parallel with the system and gives a verdict about

whether a fault has occurred or not yet. The diagnoser

raises an alarm when the fault is detected which

triggers the controller. The controller is based on the

recovery strategy specified for the fault (type) and aims

to bring the system back to states/modes where the

safety requirements hold. The controller is also

automatically synthesized by the FDIR tool which

assembles it together with the diagnoser(s). Finally, the

tool generates C++ code from the synthesized FDIR

component that can be put in the original TASTE

system design and run online in the actual system. For

more details the reader is referred to [22].

Figure 7: System design process in the context of the BIP

framework.

5 CONCLUSIONS

The ERGO framework provides a set of building

blocks that can be used for the development of any

robotic asset requiring a high level of autonomy.

In the ERGO architecture, meanwhile, autonomy

levels E1 (telecommanding) to E2 (time-tag

commanding) are covered by a (generic) Ground

control interface component, E3 and E4 are covered

by a mission planning component, which contains an

on-board planner and scheduler provided as part of

the core framework. An interface with the Functional

Layer (the Command Dispatcher reactors) provides

the executive layer.

The executive and deliberative layers are embedded

into a single agent in charge of the management of a

set of control loops. Components of the agent are

called reactors and benefit from a single interface.to

the agent’s controller. The planner, the Ground

Control interface and the agent are designed to be

tailored for any specific mission. PDDL models of

the system need to be defined, as well as a set of state

variables (timelines) handled internally by the agent.

The framework is structured in such a way that it

provides core utilities (able to be used in any robotic

platform) and specific utilities (covering dedicated

functionalities, like the guidance of a planetary rover,

the handling of a robotic arm, or the automatic

identification of serendipitous events based on

images). These components are provided in the form

of generic libraries that can be re-used in different

developments.

ERGO uses a Model-driven Development (MDD)

approach based on TASTE. TASTE is the tool that

allows to develop the components of the system, and

to define the interfaces among all them. Moreover,

the BIP verification and validation tools provided by

ERGO can be used to check the correctness of the

design.

From the user’s perspective, the ERGO framework

provides many features, most of them could not be

required for a particular robotic asset, but the

modularity of the system allows the user to pick

those features that are necessary for a particular

robotic instantiation.

Acknowledgement

We would like to thank the European Commission

and the members of the PERASPERA programme

Support Activity (ESA as coordinator, ASI, CDTI,

CNES, DLR and UKSA) for their support and

guidance in the ERGO activity. In addition, we would

like to thank our partners, Airbus Defence and Space

Ltd, The University of Basel, King’s College

University, and Ellidiss, for their support and

collaboration in the development of this paper. The

project has received funding from the European

Union’s Horizon 2020 research and innovation

programme under grant agreement No 730086.

References

[1] http://www.h2020-ergo.eu/

[2] http://www.h2020-peraspera.eu/

[3] http://exploration.esa.int/mars/

[4] https://mars.nasa.gov/mars2020/

[5] JPL. Mars Exploration Rovers. Available at:

http://marsrovers.jpl.nasa.gov/home/index.html.

[6] E. Bernard, Douglas and Gamble, Jr., Edward B.

“Remote Agent Experiment DS1 Technology

Validation Report”. Jet propulsion Laboratory. CIT,

Pasadena, California.

[7] G. Rabideau, D.Tran, et al “Mission Operations of

Earth Observing One with on-board autonomy” IEEE

International Conference on Space Mission

Challenges for Information Technology. Pasadena,

CA. July 2006.

[8] Medina, A., et al. in “Aerospace Robotics II”.

Ottawa, Canada: “Online of an Autonomy framework

for space robotics”. Springer International Publishing

pp 187-198, Switzerland 2015.

[9] Ocón Alonso, J. Delfa, J.M. , De la Rosa Turbides,

T. García-Olaya, A. Escudero Martín, Y. “GOTCHA:

An autonomous controller for the space domain”.

[10] Muscettola N., G. A. Dorais, C. Fry, R.

Levinson, and C. Plaunt, “IDEA: Planning at the core

of autonomous reactive agents”, in Proc IWPSS,

Houston.

[11] Rajan, K., et al, “A systematic agent framework

for situated autonomous systems” AAMAS '10

Proceedings of the 9th International Conference on

Autonomous Agents and Multiagent Systems:

volume 2, Pages 583-590”.

[12] J. Delange and M. Perrotin “On integration of

open-source tools for system validation, example

with the TASTE tool-chain” 13th Real-Time Linux

Workshop.

[13] http://www.h2020-esrocos.eu/

[14] Basu, A., Bozga, M., & Sifakis, J. Modeling

heterogeneous real-time components in BIP. SEFM,

pp. 3-12. 2016. Fourth IEEE International

Conference in Software Engineering and Formal

Methods.

[15] ECSS Secretariat. (ESA/ESTEC), “ECSS-E-70-

11 Space Segment Operability” (August, 2005).

Nordjwick, The Netherlands.

[16] M., Wallace I. and Woods. MASTER: A Mobile

Autonomous Scientist for Terrestrial and Extra-

Terrestrial Research. s.l.: 13th Symposium on

Advanced Space Technologies in Robotics and

Introduction to Terrain-Vehicle Systems. Ann Arbor,

IL: University of Michigan Press. Automation,

ASTRA, 2015. 3.

[17] M. Winter et al ExoMars Rover Vehicle: Detailed

Description of the GNC System. s.l. : Proceedings of

Space Technologies in Robotics and Automation

(ASTRA), 2015.

[18] http://www.sargon-project.eu/

[19] R. Alur and D. L. Dill. A theory of timed

automata. Theor. Comput. Sci., 126(2):183–235,

1994.

[20] S. Bensalem, F. Ingrand and J. Sifakis.

Autonomous Robot Software Design Challenge. In

6th IARP/IEEE-RAS/EURON Joint Workshop on

Technical Challenge for Dependable Robots in

Human Environments, 2008.

[21] A. Basu, M. Gallien, C. Lesire, T. Nguyen, S.

Bensalem, F. Ingrand and J. Sifakis. Incremental

Component-Based Construction and Verification of a

Robotic System. In European Conference on

Artificial Intelligence ECAI’08 Proceedings, volume

178 of FAIA, pages 631-635, IOS Press.

[22] I. Dragomir, S. Iosti, M. Bozga, S. Bensalem.

Designing Systems with Detection and Reconfiguration

Capabilities: A Formal Approach. Submitted. Extended

version available on Arxiv.

[23] L.de Moura, N. Bjørner: Z3: An Efficient SMT

Solver, TACAS 2008.

[24] Drew McDermott, Malik Ghallab, Adele Howe,

Craig Knoblock, Ashwin Ram, Manuela Veloso,

Daniel Weld, and David Wilkins. PDDL-the planning

domain definition language. 1998.

[25] Christian Dornhege, Patrick Eyerich, Thomas

Keller, Sebastian Trüg, Michael Brenner and

Bernhard Nebel. Semantic Attachments for Domain-

Independent Planning Systems. In Proceedings of the

19th International Conference on Automated

Planning and Scheduling (ICAPS 2009), pp. 114-121.

2009.

[26] Florian Pommerening, Malte Helmert, Gabriele

Röger and Jendrik Seipp. “From Non-Negative to

General Operator Cost Partitioning”. Proc. Of 29th

AAAI Conference on Artificial Intelligence (AAAI

2015).

http://www.h2020-ergo.eu/
http://www.h2020-peraspera.eu/
http://exploration.esa.int/mars/
https://mars.nasa.gov/mars2020/
http://marsrovers.jpl.nasa.gov/home/index.html
http://www.sargon-project.eu/

